223
Views
3
CrossRef citations to date
0
Altmetric
Articles

Recombinant production of active Streptococcus pneumoniae CysE in E. coli facilitated by codon optimized BL21(DE3)-RIL and detergent

, &

References

  • Kadioglu, A.; Weiser, J.N.; Paton, J.C.; Andrew, P.W. The Role of Streptococcus pneumoniae Virulence Factors in Host Respiratory Colonization and Disease. Nat. Rev. Micro. 2008, 6, 288–301. DOI: 10.1038/nrmicro1871.
  • Bogaert, D.; Groot, R.; Hermans, P. Streptococcus pneumoniae Colonisation: The Key to Pneumococcal Disease. Lancet Infect. Dis. 2004, 4, 144–154. DOI: 10.1016/S1473-3099(04)00938-7.
  • Whitney, C.G.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Lexau, C.; Reingold, A.; Lefkowitz, L.; Cieslak, P.R.; Cetron, M.; Zell, E.R.; et al. Increasing Prevalence of Multidrug-Resistant Streptococcus pneumoniae in the United States. N. Engl. J. Med. 2000, 343, 1917–1924. DOI: 10.1056/NEJM200012283432603.
  • Cherazard, R.; Epstein, M.; Doan, T.L.; Salim, T.; Bharti, S.; Smith, M.A. Antimicrobial Resistant Streptococcus pneumoniae: Prevalance, Mechanisms, and Clinical Implications. Am. J. Therap. 2017, 24, e361–e369. DOI: 10.1097/MJT.0000000000000551.
  • Leustek, T.; Martin, M.N.; Bick, J.A.; Davies, J.P. Pathways and Regulation of Sulfur Metabolism Revealed through Molecular and Genetic Studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 141–165. DOI: 10.1146/annurev.arplant.51.1.141.
  • Kobayashi, K.; Ehrlich, S.D.; Albertini, A.; Amati, G.; Andersen, K.K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; et al. Essential Bacillus subtilis Genes. Proc. Natl. Acad. Sci. 2003, 100, 4678–4683. DOI: 10.1073/pnas.0730515100.
  • Sassetti, C.M.; Rubin, E.J. Genetic Requirements for Mycobacterial Survival during Infection. Proc. Natl. Acad. Sci. 2003, 100, 12989–12994. DOI: 10.1073/pnas.2134250100.
  • Pye, V.E.; Tingey, A.P.; Robson, R.L.; Moody, P.C.E. The Structure and Mechanism of Serine Acetyltransferase from Escherichia coli. J. Biol. Chem. 2004, 279, 40729–40736. DOI: 10.1074/jbc.M403751200.
  • Griffith, O.W. Mammalian Sulfur Amino Acid Metabolism: An Overview. Meth. Enzymol. 1987, 143, 366–376. DOI: 10.1016/0076-6879(87)43065-6.
  • Zhang, R.; Lin, Y. DEG 5.0: A Database of Essential Genes in Both Prokaryotes and Eukaryotes. Nucl. Acids Res. 2009, 37, D455–D458. DOI: 10.1093/nar/gkn858.
  • Akerley, B.J.; Rubin, E.J.; Novick, V.L.; Amaya, K.; Judson, N.; Mekalanos, J.J.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; et al. A Genome-scale Analysis for Identification of Genes Required for Growth or Survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. 2002, 99, 966–971. DOI: 10.1073/pnas.012602299.
  • Chaudhuri, R.R.; Allen, A.G.; Owen, P.J.; Shalom, G.; Stone, K.; Harrison, M.; Burgis, T. A.; Lockyer, M.; Garcia-Lara, J.; Foster, S.J.; et al. Comprehensive Identification of Essential Staphylococcus aureus Genes Using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics. 2009, 10, 291. DOI: 10.1186/1471-2164-10-291.
  • Rengarajan, J.; Bloom, B.R.; Rubin, E.J. From the Cover: Genome-wide Requirements for Mycobacterium tuberculosis Adaptation and Survival in Macrophages. Proc. Natl. Acad. Sci. 2005, 102, 8327–8332. DOI: 10.1073/pnas.0503272102.
  • Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes Required for Mycobacterial Growth Defined by High Density Mutagenesis. Mol. Microbiol. 2003, 48, 77–84. DOI: 10.1046/j.1365-2958.2003.03425.x.
  • Francis, D.M.; Page, R. Strategies to Optimize Protein Expression in E. coli. Curr. Protoc. Protein Sci. 2010, 61, 5.24.1–5.24.29. DOI: 10.1002/0471140864.ps0524s61.
  • Gopal, G.J.; Kumar, A. Strategies for the Production of Recombinant Protein in Escherichia coli. Protein J. 2013, 32, 419–425. DOI: 10.1007/s10930-013-9502-5.
  • Sharp, P.M.; Li, W.H. The Codon Adaptation Index – A Measure of Directional Synonymous Codon Usage Bias, and Its Potential Applications. Nucl. Acids Res. 1987, 15, 1281–1295. DOI: 10.1093/nar/15.3.1281.
  • Pellizza, L.; Smal, C.; Rodrigo, G.; M. Codon, A. Usage Clusters Correlation: Towards Protein Solubility Prediction in Heterologous Expression Systems in E. coli. Sci. Rep. 2018, 8, 10618. DOI: 10.1038/s41598-018-29035-z.
  • Plotkin, J. B.; Kudla, G. Synonymous but not the Same: The Causes and Consequences of Codon Bias. Nat. Rev. Genet. 2011, 12, 32–42. DOI: 10.1038/nrg2899.
  • Fischer, B.; Perry, B.; Sumner, I.; Goodenough, P. A Novel Sequential Procedure to Enhance the Renaturation of Recombinant Protein from Escherichia coli Inclusion Bodies. Protein Eng. Des. Sel. 1992, 5, 593. DOI: 10.1093/protein/5.6.593.
  • Park, M.J.; Seo, H.S.; Yang, K.H.; Kim, H.J. Complete Solubilization and Purification of Recombinant Human Growth Hormone Produced in Escherichia coli. PLoS ONE. 2013, 8, 56168.
  • Kane, J. F. Effects of Rare Codon Clusters on High-level Expression of Heterologous Proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6, 494–500. DOI: 10.1016/0958-1669(95)80082-4.
  • Sambrook, J.; David, D.W.; Russell, W. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2001.
  • E. coli codon usage analyzer. Available at: http://www.faculty.ucr.edu/∼mmaduro/codonusage/usage.htm (accessed October 12, 2018).
  • Rare Codon Analysis Tool. Available at: https://www.genscript.com/tools/rare-codon-analysis (accessed October 12, 2018).
  • Noji, M.; Inoue, K.; Kimura, N.; Gouda, A.; Saito, K. Isoform-dependent Differences in Feedback Regulation and Subcellular Localization of Serine Acetyltransferase Involved in Cysteine Biosynthesis from Arabidopsis thaliana. J. Biol. Chem. 1998, 273, 32739–32745. DOI: 10.1074/jbc.273.49.32739.
  • Kredich, N.M.; Tomkins, G.M. The Enzymic Synthesis of L-cysteine in Escherichia coli and Salmonella Typhimurium. J. Biol. Chem. 1966, 241, 4955–4965.
  • Kumar, S.; Kumar, N.; Alam, N.; Gourinath, S. Crystal Structure of Serine Acetyl Transferase from Brucella abortus and its Complex with Coenzyme A. Biochim. Biophys. Acta. 2014, 1844, 1741–1748. DOI: 10.1016/j.bbapap.2014.07.009.
  • Rosano, G.L.; Ceccarelli, E.A. Recombinant Protein Expression in Escherichia coli: Advances and Challenges. Front. Microbiol. 2014, 5, 1–17.
  • Chou, C. P. Engineering Cell Physiology to Enhance Recombinant Protein Production in Escherichia coli. Appl. Microbiol. Biotechnol. 2007, 76, 521–532. DOI: 10.1007/s00253-007-1039-0.
  • Sahdev, S.; Khattar, S. K.; Saini, K. S. Production of Active Eukaryotic Proteins through Bacterial Expression Systems: A Review of the Existing Biotechnology Strategies. Mol. Cell. Biochem. 2007, 307, 249–264. DOI: 10.1007/s11010-007-9603-6.
  • Verma, D.; Gupta, S.; Kaur, K.J.; Gupta, V. Is Perturbation in the Quaternary Structure of Bacterial CysE, another Regulatory Mechanism for Cysteine Synthesis? Int. J. Biol. Macromol. 2018, 111, 1010–1018. DOI: 10.1016/j.ijbiomac.2018.01.076.
  • Gorman, J.; Shapiro, L. Structure of Serine Acetyltransferase from Haemophilus influenzae Rd. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1600–1605. DOI: 10.1107/S0907444904015240.
  • Kleber-Janke, T.; Becker, W.M. Use of Modified BL21(DE3) Escherichia coli Cells for High-Level Expression of Recombinant Peanut Allergens Affected by Poor Codon Usage. Protein Express. Purif. 2000, 19, 419–424. DOI: 10.1006/prep.2000.1265.
  • Guerra, Á.P.; Calvo, E.P.; Wasserman, M.; Chaparro Olaya, J. Production of Recombinant Proteins from Plasmodium falciparum in Escherichia coli. Biomedica. 2016, 36, 97–108.
  • Gvritishvili, A.G.; Leung, K.W.; Tombran-Tink, J. Codon Preference Optimization Increases Heterologous PEDF Expression. PLoS ONE. 2010, 5, e15056. DOI: 10.1371/journal.pone.0015056.
  • Danilevich, V.N.; Petrovskaya, L.E.; Grishin, E.V. A Highly Efficient Procedure for the Extraction of Soluble Proteins from Bacterial Cells with Mild Chaotropic Solutions. Chem. Eng. Technol. 2008, 31, 904–910. DOI: 10.1002/ceat.200800024.
  • Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein Recovery from Inclusion Bodies of Escherichia coli Using Mild Solubilization Process. Microb. Cell Fact. 2015, 14, 1–10.
  • Johnson, M. Detergents: Triton X-100, Tween-20, and More. Mater. Methods. 2013, 3: 163.
  • Koley, D.; Bard, A.J. Triton X-100 Concentration Effects on Membrane Permeability of a Single HeLa Cell by Scanning Electrochemical Microscopy (SECM). Proc. Natl Acad. Sci. 2010, 107, 16783–16787. DOI: 10.1073/pnas.1011614107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.