386
Views
23
CrossRef citations to date
0
Altmetric
Articles

Optimization of laccase–alginate–chitosan-based matrix toward 17 α-ethinylestradiol removal

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Andrew, M.N.; O’Connor, W.A.; Dunstan, R.H.; Macfarlane, G.R. Exposure to 17α-ethynylestradiol Causes Dose and Temporally Dependent Changes in Intersex, Females and Vitellogenin Production in the Sydney Rock Oyster. Ecotoxicology. 2010, 19, 1440–1451. DOI: 10.1007/s10646-010-0529-5.
  • Lloret, L.; Eibes, G.; Lú-Chau, T.A.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Laccase-catalyzed Degradation of Anti-inflammatories and Estrogens. Biochem. Eng. J. 2010, 51, 124–131. DOI: 10.1016/j.bej.2010.06.005.
  • Aris, A.Z.; Shamsuddin, A.S.; Praveen, S.M. Occurrence of 17α-ethynylestradiol (EE2) in the Environment and Effect on Exposed Biota: A Review. Environ. Int. 2014, 69, 104–119. DOI: 10.1016/j.envint.2014.04.011.
  • Becker, D.; Rodriguez-Mozaz, S.; Insa, S.; Schoevaart, R.; Barcelo, ,́D.; de Cazes, M.; Belleville, M.-P.; Sanchez-Marcano, J.; Misovic, A.; Oehlmann, J. Removal of Endocrine Disrupting Chemicals in Wastewater by Enzymatic Treatment with Fungal Laccases. Org. Process Res. Dev. 2017, 21, 480–491. DOI: 10.1021/acs.oprd.6b00361.
  • Barrios-Estrada, C.; Rostro-Alanis, M.J.; Muñoz-Gutiérrez, B.D.; Iqbal, F.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent Contaminants: Endocrine Disruptors and Their Laccase-assisted Degradation – A Review. Scie. Total. Environ. 2018, 612, 1516–1531. DOI: 10.1016/j.scitotenv.2017.09.013.
  • Baldrian, P. Fungal Laccases Occurrence and Properties. FEMS. Microbiol. Rev. 2006, 30, 215–242. DOI: 10.1111/j.1574-4976.2005.00010.x.
  • Ba, S.; Kumar, V.V. Recent Developments in the Use of Tyrosinase and Laccase in Environmental Applications. Crit. Rev. Biotechnol. 2017, 37, 819–832. DOI: 10.1080/07388551.2016.1261081.
  • Esposito, E.; Innocentini-Mei, L.H.; Ferraz, A.; Canhos, V.P.; Durán, N. Phenoloxidases and Hydrolases from Pycnoporus Sanguineus (UEC-2050 Strain): Applications. J. Biotechnol. 1993, 29, 219–228. DOI: 10.1016/0168-1656(93)90054-Q.
  • Gioia, L.; Manta, C.; Ovsejevi, K.; Burgueno, J.; Menendez, P.; Rodriguez-Couto, S. Enhancing Laccase Production by a Newly-isolated Strain of Pycnoporus Sanguineus with High Potential for Dye Decolouration. RSC Adv. 2014, 4, 34096. DOI: 10.1039/C4RA06039C.
  • Lu, L.; Zhao, M.; Zhang, B.B.; Yu, S.Y.; Bian, X.J.; Wang, W.; Wang, Y. Purification and Characterization of Laccase from Pycnoporus Sanguineus and Decolorization of an Anthraquinone Dye by the Enzyme. Appl. Microbiol. Biotechnol. 2007, 74, 1232–1239. DOI: 10.1007/s00253-006-0767-x.
  • Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H. Agarose-chitosan Hydrogel-immobilized Horseradish Peroxidase with Sustainable Bio-catalytic and Dye Degradation Properties. Int. J. Biol. Macromol. 2019, 124, 742–749. DOI: 10.1016/j.ijbiomac.2018.11.220.
  • Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H. Environmentally-related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, quantification, and Treatment. Environ. Int. 2019, 122, 52–66. DOI: 10.1016/j.envint.2018.11.038.
  • Bilal, M.; Rasheed, T.; Iqbal, H.M.N.; Yan, Y. Peroxidases-assisted Removal of Environmentally-related Hazardous Pollutants with Reference to the Reaction Mechanisms of Industrial Dyes. Sci. Total Environ. 2018, 644, 1–13. DOI: 10.1016/j.scitotenv.2018.06.274.
  • Bilal, M.; Asgher, M.; Cheng, H.; Yan, Y.; Iqbal, H. Multi-point Enzyme Immobilization, Surface Chemistry, and Novel Platforms: A Paradigm Shift in Biocatalyst Design. Crit. Rev. Biotechnol. 2018, 39, 202–219. DOI: 10.1080/07388551.2018.1531822.
  • Bilal, M.; Iqbal, H.; Guo, S.; Hu, H.; Wang, W.; Zhang, X. State-of-the-art Protein Engineering Approaches Using Biological Macromolecules: A Review from Immobilization to Implementation View Point. Int. J. Biol. Macromol. 2018, 108, 893–901. DOI: 10.1016/j.ijbiomac.2017.10.182.
  • Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.; Cui, J. Smart chemistry and Its Application in Peroxidase Immobilization Using Different Support Materials. Int. J. Biol. Macromol. 2018, 119, 278–290. DOI: 10.1016/j.ijbiomac.2018.07.134.
  • Guzik, U.; Hupert-Kocurek, K.; Marchlewicz, A.; Wojcieszyńska, D. Enhancement of Biodegradation Potential of Catechol 1,2-dioxygenase through Its Immobilization in Calcium Alginate Gel. Electr. J. Biotechnol. 2014, 17, 83–88. DOI: 10.1016/j.ejbt.2014.02.001.
  • Fernández-Fernández, M.; Sanromán, M.A.; Moldes, D. Recent Developments and Applications of Immobilized Laccase. Biotechnol. Adv. 2013, 31, 1808–1825. DOI: 10.1016/j.biotechadv.2012.02.013.
  • Mahmood, S.J.; Siddique, A. Ionic Studies of Sodium Alginate Isolated from Sargassum Terrarium (brown Algea) Karachi Coast with 2,1-Electrolyte. J. Saudi Chem. Soc. 2010, 14, 117–123. DOI: 10.1016/j.jscs.2009.12.018.
  • Sun, X.; Shi, J.; Xu, X.; Cao, S. Chitosan Coated Alginate/poly(N-isopropylacrylamide) Beads for Dual Responsive Drug Delivery. Int. J. Biol. Macromol. 2013, 59, 273–281. DOI: 10.1016/j.ijbiomac.2013.04.066.
  • Brandi, P.; D’Annibale, A.; Galli, C.; Gentili, P.; Pontes, A.S.N. In Search for Practical Advantages from the Immobilisation of an Enzyme: The Case of Laccase. J. Mol. Catal. B- Enzym. 2006, 41, 61–69. DOI: 10.1016/j.molcatb.2006.04.012.
  • Pan, T.; Sun, Y.J.; Wang, X.L.; Shi, T.; Zhao, Y.L. Influence of Counteranions on Catalytic Ability of Immobilized Laccase in Cu-alginate Matrices: Inhibition of Chloride and Activation of Acetate. Chinese. Chem. Lett. 2014, 25, 983–988. DOI: 10.1016/j.cclet.2014.05.045.
  • Rahim, S.N.A.; Sulaiman, A.; Hamzah, F.; Hamid, K.H.K.; Rodhi, M.N.M.; Musa, M.; Edama, N.A. Enzymes Encapsulation within Calcium Alginate-clay Beads: Characterization and Application for Cassava Slurry Saccharification. Procedia Eng. 2013, 68, 411–417. DOI: 10.1016/j.proeng.2013.12.200.
  • Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Biodegradation of Textile Dyes by Immobilized Laccase from Coriolopsis Gallica into Ca-alginate Beads. Int. Biodeter. Biodegr. 2014, 90, 71–78. DOI: 10.1016/j.ibiod.2014.02.006.
  • Janegitz, B.C.; Lourenção, B.C.; Lupetti, K.O.; Fatibello-Filho, O. Desenvolvimento de um Método Empregando Quitosana Para Remoção de Íons Metálicos de Águas Residuárias. Quím. Nova. 2007, 30, 879–884. DOI: 10.1590/S0100-40422007000400022.
  • Wang, Y.; Chen, H.; Wang, J.; Xing, L. Preparation of Active Corn Peptides from Zein through Double Enzymes Immobilized with Calcium Alginate–chitosan Beads. Process. Biochem. 2014, 49, 1682–1690. DOI: 10.1016/j.procbio.2014.07.002.
  • Cabana, H.; Ahamed, A.; Leduc, R. Conjugation of Laccase from the White Rot Fungus Trametes Versicolor to Chitosan and Its Utilization for the Elimination of Triclosan. Bioresource. Technol. 2011, 102, 1656–1662. DOI: 10.1016/j.biortech.2010.09.080.
  • Lu, L.; Zhao, M.; Wang, Y. Immobilization of Laccase by Alginate–chitosan Microcapsules and Its Use in Dye Decolorization. World J. Microbiol. Biotechnol. 2007, 23, 159–166. DOI: 10.1007/s11274-006-9205-6.
  • Valeriano, V.S.; Silva, A.M.F.; Santiago, M.F.; Bara, M.T.F.; Garcia, T.A. Production of Laccase by Pycnoporus Sanguineus Using 2,5 - xylidine and Ethanol. Braz. J. Microbiol. 2009, 40, 790–794. DOI: 10.1590/S1517-83822009000400009.
  • Bourbonnais, R.; Paice, M.G. Oxidation of Non-phenolic Substrates. An Expanded Role for Laccase on Lignin Biodegradation. FEBS Lett. 1990, 267, 99–102. DOI: 10.1016/0014-5793(90)80298-W.
  • Mayer, A.M.; Staples, R.C. Review – Laccase: New Functions for an Old Enzyme. Phytochemistry. 2002, 60, 551–565. DOI: 10.1016/S0031-9422(02)00171-1.
  • Santos, I.J.S.; Grossman, M.J.; Sartoratto, A.; Ponezi, A.N.; Durrant, L.R. Degradation of the Recalcitrant Pharmaceuticals Carbamazepine and 17α-ethinylestradiol by Ligninolytic Fungi. Chem. Eng. Trans. 2012, 27, 169–174.
  • Cheriyan, S.; Abraham, E.T. Enzymatic Bioremediation of Cashew Nut Shell Liquid Contamination. J. Hazard. Mater. 2010, 176, 1097–1100. DOI: 10.1016/j.jhazmat.2009.11.091.
  • Alexa, R.I.; Mounsey, J.S.; O’Kennedy, B.T.; Jacquier, J.C. Oxidative Stability of Water/oil Mixtures as Influenced by the Addition of Free Cu2+ or Cu–alginate Gel Beads. Food. Chem. 2011, 129, 253–258. DOI: 10.1016/j.foodchem.2011.04.028.
  • Jaiswal, N.; Pandey, V.P.; Dwivedi, U.N. Purification of a Thermostable Laccase from Leucaena Leucocephala Using a Copper Alginate Entrapment Approach and the Applicationof the Laccase in Dye Decolorization. Process. Biochem. 2014, 49, 1196–1204. DOI: 10.1016/j.procbio.2014.04.002.
  • Xu, F. Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases: Correlation between Activity and Redox Potentials as Well as Halide Inhibition. Biochemistry. 1996, 35, 7608–7614. DOI: 10.1021/bi952971a.
  • Fokina, O.; Eipper, J.; Winandy, L.; Kerzenmacher, S.; Fischer, R. Improving the Performance of a Biofuel Cell Cathode with Laccase-containing Culture Supernatant from Pycnoporus Sanguineus. Bioresource. Technol. 2015, 175, 445–453. DOI: 10.1016/j.biortech.2014.10.127.
  • Ramírez-Cavazos, L.I.; Junghanns, C.; Ornelas-Soto, N.; Cárdenas-Chávez, D.L.; Hernández-Luna, C.; Demarche, P.; Enaud, E.; García-Morales, R.; Agathos, S.N.; Parra, R. Purification and Characterization of Two Thermostable Laccases from Pycnoporus Sanguineus and Potential Role in Degradation of Endocrine Disrupting Chemicals. J. Mol. Catal. B- Enzym. 2014, 108, 32–42. DOI: 10.1016/j.molcatb.2014.06.006.
  • Cardoso, F.P.; Neto, S.A.; Ciancaglini, P.; Andrade, A.R. The Use of PAMAM Dendrimers as a Platform for Laccase Immobilization: Kinetic Characterization of the Enzyme. Appl. Biochem. Biotechnol. 2012, 167, 1854–1864. DOI: 10.1007/s12010-012-9740-6.
  • Spinelli, D.; Fatarella, E.; Michele, A.D.; Pogni, R. Immobilization of Fungal (Trametes Versicolor) laccase onto Amberlite IR-120 H Beads: Optimization and Characterization. Process Biochem. 2013, 48, 218–223. DOI: 10.1016/j.procbio.2012.12.005.
  • Xu, R.; Zhou, Q.; Li, F.; Zhang, B. Laccase Immobilization on Chitosan/poly(vinyl Alcohol) Composite Nanofibrous Membranes for 2,4-dichlorophenol Removal. Chem. Eng. J. 2013, 222, 321–329. DOI: 10.1016/j.cej.2013.02.074.
  • Kumar, V.V.; Sivanesan, S.; Cabana, H. Magnetic Cross-linked Laccase Aggregates — Bioremediation Tool for Decolorization of Distinct Classes of Recalcitrant Dyes. Sci. Total. Environ. 2014, 487, 830–839. DOI: 10.1016/j.scitotenv.2014.04.009.
  • Lloret, L.; Eibes, G.; Feijoo, G.; Moreira, M. T.; Lema, J. M.; Hollmann, F. Immobilization of Laccase by Encapsulation in a Sol–gel Matrix and Its Characterization and Use for the Removal of Estrogens. Biotechnol. Prog. 2011, 27, 1570–1579. DOI: 10.1002/btpr.694.
  • Lloret, L.; Hollmann, F.; Eibes, G.; Feijoo, G.; Moreira, M. T.; Lema, J. M. Immobilisation of Laccase on Eupergit Supports and Its Application for the Removal of Endocrine Disrupting Chemicals in a Packed-bed Reactor. Biodegradation. 2012, 23, 373–386. DOI: 10.1007/s10532-011-9516-7.
  • Lloret, L.; Eibes, G.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Removal of Estrogenic Compounds from Filtered Secondary Wastewater Effluent in a Continuous Enzymatic Membrane Reactor. Identification of Biotransformation Products. Environ. Sci. Technol. 2013, 47, 4536–4543. DOI: 10.1021/es304783k.
  • Catapane, M.; Nicolucci, C.; Menale, C.; Mita, L.; Rossi, S.; Mita, D. G.; Diano, N. Enzymatic Removal of Estrogenic Activity of Nonylphenol and Octylphenol Aqueous Solutions by Immobilized Laccase from Trametes Versicolor. J. Hazard. Mater. 2013, 248–249, 337–346. DOI: 10.1016/j.jhazmat.2013.01.031.
  • Niladevi, K.N.; Prema, P. Oxidative Stability of Water/Oil Mixtures as Influenced by the Addition of Free Cu2+ or Cu–alginate Gel Beads. Food. Chem. 2008, 24, 1215–1222.
  • Nicota, S.; Intra, A.; Ottolina, G.; Riva, S.; Danieli, B. Laccase-mediated Oxidation of the Steroid Hormone 17β-estradiol in Organic Solvents. Tetrahedron Asym. 2004, 15, 2927–2931. DOI: 10.1016/j.tetasy.2004.06.034.
  • Lacerda, M.F.A.R.; Lopes, F.M.; Sartoratto, A.; Ponezi, A.N.; Thomaz, D.V.; Schimidt, F.; Santiago, M.F. Stability Study of Immobilized Laccase on Luffa Cylindrica Fibers and Assessment of Synthetic Hormone Degradation. Prep. Biochem. Biotechnol. 2018, 2, 1–6. DOI: 10.1080/10826068.2018.1525568.
  • Golveia, J.C.S.; Santiago, M.F.; Sales, P.T.F.; Sartoratto, A.; Ponezi, A.N.; Thomaz, D.V.; Gil, E.S.; Bara, M.T.F. Pycnoporus Sanguineus Laccase Induced by Cupuaçu (Theobroma Grandiflorum) Residue and Its Application in EE2 Degradation. Prep. Biochem. Biotechnol. 2018, 25, 1–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.