566
Views
10
CrossRef citations to date
0
Altmetric
Articles

Site-specific integration of light chain and heavy chain genes of antibody into CHO-K1 stable hot spot and detection of antibody and fusion protein expression level

, , , &

Reference

  • Wurm, F.M. Production of Recombinant Protein Therapeutics in Cultivated Mammalian Cells. Nat. Biotechnol. 2004, 22, 1393–1398.
  • Wurm, F.M.; Hacker, D. First CHO Genome. Nat. Biotechnol. 2011, 29, 718–720.
  • Kim, J.Y.; Kim, Y.G.; Lee, G.M. CHO Cells in Biotechnology for Production of Recombinant Proteins: current State and Further Potential. Appl. Microbiol. Biotechnol. 2012, 93, 917–930.
  • Fischer, S.; Handrick, R.; Otte, K. The Art of CHO Cell Engineering: A Comprehensive Retrospect and Future Perspectives. Biotechnol. Adv. 2015, 33, 1878–1896.
  • Wilson, C.; Bellen, H.J.; Gehring, W.J. Position Effects on Eukaryotic Gene Expression. Annu. Rev. Cell. Biol. 1990, 6, 679–714.
  • Lee, J.S.; Kallehauge, T.B.; Pedersen, L.E.; Kildegaard, H.F. Site-specific Integration in CHO Cells Mediated by CRISPR/Cas9 and Homology-directed DNA Repair Pathway. Sci. Rep. 2015, 5, 8572.
  • Jakočiūnas, T.; Jensen, M.K.; Keasling, J.D. CRISPR/Cas9 Advances Engineering of Microbial Cell Factories. Metab. Eng. 2016, 34, 44–59.
  • Lee, J.S.; Grav, L.M.; Pedersen, L.E.; Lee, G.M.; Kildegaard, H.F. Accelerated Homology-directed Targeted Integration of Transgenes in Chinese Hamster Ovary Cells via CRISPR/Cas9 and Fluorescent Enrichment. Biotechnol. Bioeng. 2016, 113, 2518–2523.
  • Kito, M.; Itami, S.; Fukano, Y.; Yamana, K.; Shibui, T. Construction of Engineered CHO Strains for High-level Production of Recombinant Proteins. Appl. Microbiol. Biotechnol. 2002, 60, 442–448.
  • Gao, J.; Cha, S.; Jonsson, R.; Opalko, J.; Peck, A. B. Detection of anti-type 3 Muscarinic Acetylcholine Receptor Autoantibodies in the Sera of Sjogren's Syndrome Patients by Use of a Transfected Cell Line Assay. Arthritis. Rheum. 2004, 50, 2615–2621.
  • Huang, Y.; Li, Y.; Wang, Y.G.; Gu, X.; Wang, Y.; Shen, b.F. An Efficient and Targeted Gene Integration System for High-level Antibody Expression. J. Immunol. Methods. 2007, 322, 28–39..
  • Schwenk, F.; Baron, U.; Rajewsky, K. A Cre-transgenic Mouse Strain for the Ubiquitous Deletion of Loxp-flanked Gene Segments Including Deletion in Germ Cells. Nucl. Acids. Res. 1995, 23, 5080–5081.
  • Park, Y.N.; Masison, D.; Eisenberg, E.; Greene, L.E. Application of the FLP/FRT System for Conditional Gene Deletion in Yeast Saccharomyces cerevisiae. Yeast. 2011, 28, 673–681.
  • Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013, 339, 819–823.
  • Lee, J.S.; Grav, L.M.; Lewis, N.E.; Kildegaard, H.F. CRISPR/Cas9-mediated Genome Engineering of CHO Cell Factories: Application and Perspectives. Biotechnol. J. 2015, 10, 979–994.
  • Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided Human Genome Engineering via Cas9. Science. 2013, 339, 823–826.
  • Hockemeyer, D.; Soldner, F.; Beard, C.; Gao, Q.; Mitalipova, M.; DeKelver, R.C.; Katibah, G.E.; Amora, R.; Boydston, E.A.; Zeitler, B.; et al. Efficient Targeting of Expressed and Silent Genes in Human ESCs and iPSCs Using Zinc-finger Nucleases. Nat. Biotechnol. 2009, 27, 851–857.
  • Zhou, S.; Ding, X.; Yang, L.; Chen, Y.; Gong, X.; Jin, J.; Li, H. Discover stable expression hot spot in genome of Chinese Hasmter Ovary cells using lentivirus based random integration method. 2018.
  • Stemmer, M.; Thumberger, T.; del Sol Keyer, M.; Wittbrodt, J.; Mateo, J.L. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool. PLoS One. 2015, 10, e0124633.
  • Zhang, J.; Liu, K.D.; Qian, K.; Miao, Y.; Cai, Y.; Li, C.; Chen, Y.; Jin, J. Construction of CHO Cell Stably Expressing GLP-1 Analogue and Study of Its Culture Process. China Biotechnol. 2017, 37, 52–58.
  • Maruyama, T.; Dougan, S.K.; Truttmann, M.C.; Bilate, A.M.; Ingram, J.R.; Ploegh, H.L. Increasing the Efficiency of Precise Genome Editing with CRISPR-Cas9 by Inhibition of Nonhomologous End Joining. Nat. Biotechnol. 2015, 33, 538–542.
  • Yoshimi, K.; Kunihiro, Y.; Kaneko, T.; Nagahora, H.; Voigt, B.; Mashimo, T. ssODN-mediated Knock-in with CRISPR-Cas for Large Genomic Regions in Zygotes. Nat. Commun. 2016, 7, 10431.
  • Takata, Y.; Kondo, S.; Goda, N.; Kanegae, Y.; Saito, I. Comparison of Efficiency between FLPe and Cre for Recombinase-mediated Cassette Exchange in Vitro and in Adenovirus Vector Production. Genes. Cells. 2011, 16, 765–777.
  • Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell. 2014, 159, 647–661.
  • Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 Knockout Screening in Human Cells. Science. 2014, 343, 84–87.
  • Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic Screens in Human Cells Using the CRISPR-Cas9 System. Science. 2014, 343, 80–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.