666
Views
19
CrossRef citations to date
0
Altmetric
Articles

Polyhydroxyalkanoate production using waste vegetable oil and filtered digestate liquor of chicken manure

ORCID Icon

References

  • Mozejko-Ciesielska, J.; Kiewisz, R. Bacterial Polyhydroxyalkanoates: Still Fabulous? Microbiol. Res. 2016, 192, 271–282. DOI: 10.1016/j.micres.2016.07.010.
  • Anjum, A.; Zuber, M.; Zia, K.M.; Noreen, A.; Anjum, M.N.; Tabasum, S. Microbial Production of Polyhydroxyalkanoates (PHAs) and Its Copolymers: A Review of Recent Advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. DOI: 10.1016/j.ijbiomac.2016.04.069.
  • Chanprateep, S. Current Trends in Biodegradable Polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. DOI: 10.1016/j.jbiosc.2010.07.014.
  • Stainbüchel, A.; Valentin, H.E. Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS. Microbiol. Lett. 1995, 128, 2019–2228.
  • Koller, M.; Braunegg, G. Biomediated Production of Structurally Diverse Poly(Hydroxyalkanoates) from Surplus Streams of the Animal Processing Industry. Polimery 2015, 60, 298–308. DOI: 10.14314/polimery.2015.298.
  • Schmidt, M.; Ienczak, J.L.; Quines, L.K.; Zanfonato, K.; Schmidell, W.; de Aragão, G.M.F. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Production in a System with External Cell Recycle and Limited Nitrogen Feeding during the Production Phase. Biochem. Eng. J. 2016, 112, 130–135. DOI: 10.1016/j.bej.2016.04.013.
  • Iftikhar, A.; Nazia, J. Enhanced Biosynthesis of Poly(3-Hydroxybutyrate) from Potato Starch by Bacillus cereus Strain 64-Ins in a Laboratory-Scale Fermenter. Preparative Biochemistry and Biotechnology 2014, 44, 822–833.
  • Narodoslawsky, M.; Shazad, H. S. K.; Kollmann, R. LCA of PHA Production-Identifying the Ecological Potential of Bio-Plastic. Chem. Bio. Chem. Eng. Q. 2015, 29, 299–305. DOI: 10.15255/CABEQ.2014.2262.
  • Rodgers, M.; Wu, G.X. Production of Polyhydroxybutyrate by Activated Sludge Performing Enhanced Biological Phosphorus Removal. Bioresour. Technol. 2010, 101, 1049–1053. DOI: 10.1016/j.biortech.2009.08.107.
  • Serafim, L.S.; Lemos, P.C.; Albuquerque, M.G.E.; Reis, M.A.M. Strategies for PHA Production by Mixed Cultures and Renewable Waste Materials. Appl. Microbiol. Biotechnol. 2008, 81, 615–628. DOI: 10.1007/s00253-008-1757-y.
  • Li, R.; Zhang, H.X.; Qi, Q.S. The Production of Polyhydroxyalkanoates in Recombinant Escherichia coli. Bioresour. Technol. 2007, 98, 2313–2320. DOI: 10.1016/j.biortech.2006.09.014.
  • Gallert, C.; Winter, J. Mesophilic and Thermophilic Anaerobic Digestion of Source-Sorted Organic Wastes: Effect of Ammonia on Glucose Degradation and Methane Production. Appl. Microbiol. Biot. 1997, 48, 405–410. DOI: 10.1007/s002530051071.
  • Kleerebezem, R.; Joosse, B.; Rozendal, R.; Van Loosdrecht, M.C.M. Anaerobic Digestion without Biogas? Rev. Environ. Sci. Biotechnol. 2015, 14, 787–801. DOI: 10.1007/s11157-015-9374-6.
  • Aragao, G.M.F.; Lindley, N.D.; Uribelarrea, J.L.; Pareilleux, A. Maintaining a Controlled Residual Growth Capacity Increases the Production of PHA Copolymers by Alcaligenes eutrophus. Biotechnol. Lett. 1996, 18, 937–942. DOI: 10.1007/BF00154625.
  • Ripley, L.E.; Boyle, W.C.; Converse, J.C. Improved Alkalimetric Monitoring for Anaerobic Digestion of High-Strength Wastes. J. Water. Pollut. Control. Fed. 1986, 5859. 406–411.
  • APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association/American Water Works Association/Water Environment Federation: Washington DC, USA. 1978.
  • Yoloğlu, E.; Uckun, M.; Alkan, U. A. Metal Accumulation and Biochemical Variations in the Freshwater Mussels (Unio Mancus) Collected from Atatürk Dam Lake, Turkey. Biochem. Syst. Ecol. 2018, 79, 60–68. DOI: 10.1016/j.bse.2018.05.006.
  • Kartika, I.A.; Yani, M.; Ariono, D.; Evon, P.; Rigal, L. Biodiesel Production from Jatropha Seeds: Solvent Extraction and In Situ Transesterification in a Single Step. Fuel 2013, 106, 111–117. DOI: 10.1016/j.fuel.2013.01.021.
  • Brandl, H.; Gross, R.A.; Lenz, R.W.; Fuller, R.C. Pseudomonas oleovorans as a Source of Poly(P-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl. Environ. Microbiol. 1988, 54, 1977–1982.
  • Timm, A.; Steinbüchel, A. Formation of Polyesters Consisting of Medium-Chain-Length 3-Hydroxyalkanoic Acids from Gluconate by Pseudomonas aeruginosa and Other Fluorescent Pseudomonads. Appl. Environ. Microbiol. 1990, 56, 3360–3367.
  • Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. DOI: 10.1016/j.biortech.2007.01.057.
  • Hejnfelt, A.; Angelidaki, I. Anaerobic Digestion of Slaughterhouse by-Products. Biomass Bioenergy 2009, 33, 1046–1054. DOI: 10.1016/j.biombioe.2009.03.004.
  • Sung, S.; Liu, T. Ammonia Inhibition on Thermophilic Anaerobic Digestion. Chemosphere 2003, 53, 43–52. DOI: 10.1016/S0045-6535(03)00434-X.
  • Yetilmezsoy, K.; Sapci-Zengin, Z. Recovery of Ammonium Nitrogen from the Effluent of UASB Treating Poultry Manure Wastewater by MAP Precipitation as a Slow Release Fertilizer. J. Hazard. Mater. 2009, 166, 260–269. DOI: 10.1016/j.jhazmat.2008.11.025.
  • Li, Z.; Ren, X.; Zuo, J.; Liu, Y.; Duan, E.; Yang, J.; Chen, P.; Wang, Y. Struvite Precipitation for Ammonia Nitrogen Removal in 7-Aminocephalosporanic Acid Wastewater. Molecules 2012, 17, 2126–2139. DOI: 10.3390/molecules17022126.
  • Kersters, K.; De Ley, J. Genus Alcaligenes Castellani and Chalmers 1919. In Bergey’s manual of systematic bacteriology; Krieg, N.R.; Holt, J.G. Eds.; The Williams and Wilkins Co.: Baltimore, MD, 1984; pp. 381–373.
  • Sugimoto, T.; Tsuge, T.; Tanaka, K.; Ishizaki, A. Control of Acetic Acid Concentration by pH-Stat Continuous Substrate Feeding in Heterotrophic Culture Phase of Two-Stage Cultivation of Alcaligenes eutrophus for Production of P(3HB) fromCO2, H2, and O2 under Non-Explosive Conditions. Biotechnol. Bioeng. 1999, 62, 625–631. DOI: 10.1002/(SICI)1097-0290(19990320)62:6<625::AID-BIT1>3.0.CO;2-D.
  • Yu, J.; Si, Y.; Keung, W.; Wong, R. Kinetics Modeling of Inhibition and Utilizationof Mixed Volatile Fatty Acids in the Formation of Polyhydroxyalkanoates by Ralstonia eutropha. Process Biochem. 2002, 37, 731–738. DOI: 10.1016/S0032-9592(01)00264-3.
  • Salmond, C.V.; Kroll, R.G.; Booth, I.R. The Effect of Food Preservatives on pH Homeostasis in Escherichia coli. J. Gen. Microbiol. 1984, 130, 2845–2850. DOI: 10.1099/00221287-130-11-2845.
  • Wang, W.J.; Yue, Z.; Sheng, G.; Yu, H. Kinetic Analysis on the Production of Polyhydroxyalkanoates from Volatile Fatty Acids by Cupriavidus necator with a Consideration of Substrate Inhibition, Cell Growth, Maintenance, and Product Formation. Biochem. Eng. J. 2010, 49, 422–428. DOI: 10.1016/j.bej.2010.02.005.
  • Wang, J.; Yu, J. Kinetic Analysis on Inhibited Growth and Poly(3-Hydroxybutyrate) Formation of Alcaligenes eutrophus on Acetate under Nutrient-Rich Conditions. Process Biochem. 2000, 36, 201–207. DOI: 10.1016/S0032-9592(00)00169-2.
  • Huschner, F.; Grousseau, E.; Brigham, C.J.; Plassmeier, J.; Popovic, M.; Rha, C.; Sinskey, A.J. Development of a Feeding Strategy for High Cell and PHA Densityfed-Batch Fermentation of Ralstonia eutropha H16 from Organic Acidsand Their Salts. Process Biochem. 2015, 50, 165–172.
  • Hafuka, A.; Sakaida, K.; Satoh, H.; Takahashi, M.; Watanabe, Y.; Okabe, S. Effect of Feeding Regimens on Polyhydroxybutyrate Production from Food Wastes by Cupriavidus necator. Bioresour. Technol. 2011, 102, 3551–3553. DOI: 10.1016/j.biortech.2010.09.018.
  • Schlegel, H.G.; Gottschalk, G.; Von Bartha, R. Formation and Utilization of Poly-β-Hydroxybutyric Acid by Knallgas Bacteria (Hydrogenomonas). Nature 1961, 191, 463–465. DOI: 10.1038/191463a0.
  • Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K. Biosynthesis of Polyesters by Alcaligenes eutrophus: incorporation of 13C-Labelled Acetate and Propionate. J. Chem. Soc. Chem. Commun. 1986, 0, 1696–1697. DOI: 10.1039/c39860001696.
  • Kunioka, M.; Tamaki, A.; Doi, Y. Crystalline and Thermal Properties of Bacterial Copolyesters: Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate). Macromolecules 1989, 22, 694–697. DOI: 10.1021/ma00192a031.
  • Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8, 273. DOI: 10.3390/polym8080273.
  • Misra, A.K.; Thakur, M.S.; Srinivas, P.; Karanth, N.G. Screening of Poly-β-Hydroxybutyrate-Producing Microorganisms Using Fourier Transform Infrared Spectroscopy. Biotechnol. Lett. 2000, 22, 1217–1219. DOI: 10.1023/A:1005602911977.
  • Alsafadi, D.; Al-Mashaqbeh, O. A One-Stage Cultivation Process for the Production of Poly-3-(Hydroxybutyrate-co-Hydroxyvalerate) from Olive Mill Wastewater by Haloferax mediterranei. N. Biotechnol. 2017, 34, 47–53. DOI: 10.1016/j.nbt.2016.05.003.
  • Palmeiro-Sanchez, T.; Fra-Vazquez, A.; Rey-Martinez, N.; Campos, J.L.; Mosquera-Corral, A. Transient Concentrations of NaCl Affect the PHA Accumulation in Mixed Microbial Culture. J. Hazard. Mater. 2016, 306, 332–339. DOI: 10.1016/j.jhazmat.2015.12.032.
  • Colombo, B.; Sciarria, T.P.; Reis, M.; Scaglia, B.; Adani, F. Polyhydroxyalkanoates (PHAs) Production from Fermented Cheese Whey by Using a Mixed Microbial Culture. Bioresour. Technol. 2016, 218, 692–699. DOI: 10.1016/j.biortech.2016.07.024.
  • Valentino, F.; Karabegovic, L.; Majone, M.; Morgan-Sagastume, F.; Werker, A. Polyhydroxyalkanoate (PHA) Storage within a Mixed-Culture Biomass with Simultaneous Growth as a Function of Accumulation Substrate Nitrogen and Phosphorus Levels. Water Res. 2015, 77, 49–63. DOI: 10.1016/j.watres.2015.03.016.
  • Morgan-Sagastume, F.; Hjort, M.; Cirne, D.; Gérardin, F.; Lacroix, S.; Gaval, G.; Karabegovic, L.; Alexandersson, T.; Johansson, P.; Karlsson, A.; et al. Integrated Production of Polyhydroxyalkanoates (PHAs) with Municipal Wastewater and Sludge Treatment at Pilot Scale. Bioresour. Technol. 2015, 181, 78–89. DOI: 10.1016/j.biortech.2015.01.046.
  • Grousseau, E.; Blanchet, E.; Deleris, S.; Maria Albuquerque, G.E.; Paul, E.; Uribelarrea, J. Phosphorus Limitation Strategy to Increase Propionic Acid Flux towards 3-Hydroxyvaleric Acid Monomers in Cupriavidus necator. Bioresour. Technol. 2014, 153, 206–215. DOI: 10.1016/j.biortech.2013.11.072.
  • Shimizu, H.; Kozaki, Y.; Kodama, H.; Shioya, S. Maximum Production Strategy for Biodegradable Copolymer P(HB-co-HV) in Fed-Batch Culture of Alcaligenes eutrophus. Biotechnol. Bioeng. 1999, 62, 518–525. DOI: 10.1002/(SICI)1097-0290(19990305)62:5<518::AID-BIT3>3.3.CO;2-Y.
  • Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883–5890. DOI: 10.1007/s00253-014-5653-3.
  • Lu, J.; Brigham, C.J.; Rha, C.; Sinskey, A.J. Characterization of an Extracellular Lipase and Its chaperone from Ralstonia eutropha H16. Appl. Microbiol. Biotechnol. 2013, 97, 2443–2454. DOI: 10.1007/s00253-012-4115-z.
  • Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Piotrowska-Seget, Z.; Radecka, I.K. Production of Polyhydroxyalkanoates from Waste Frying Oil by Cupriavidus necator. AMB Express 2011, 1, 11. DOI: 10.1186/2191-0855-1-11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.