499
Views
13
CrossRef citations to date
0
Altmetric
Articles

A new biosensor for osteoporosis detection

, &

References

  • Kanis, J.A.; Kanis, J.A. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Synopsis of a WHO Report. WHO Study Group. Osteoporosis Int. 1994, 4, 368–381. DOI: 10.1007/BF01622200.
  • Lee, S.W.; Jo, H.H.; Kim, M.R.; Kim, J.H.; You, Y.O. Association between Osteocalcin and Metabolic Syndrome in Postmenopausal Women. Arch. Gynecol. Obstet. 2015, 292, 673–681. DOI: 10.1007/s00404-015-3656-7.
  • Edwards, M.H.; Dennison, E.M.; Aihie Sayer, A.; Fielding, R.; Cooper, C. Osteoporosis and Sarcopenia in Older Age. Bone 2015, 80, 126–130. DOI: 10.1016/j.bone.2015.04.016.
  • Khashayar, P.; Meybodi, H.R.A.; Homami, M.R.; Heshmat, R.; Larijani, B. The Prevalence of Osteoporosis in an Iranian Population. J. Clin. Densitometry 2010, 13, 1–112. DOI: 10.1016/j.jocd.2010.01.022.
  • Oden, A.; McCloskey, E.V.; Kanis, J.N.; Harvey, N.C.; Johansson, H. Burden of High Fracture Probability Worldwide: Secular Increases 2010–2040. Osteoporos. Int. 2015, 26, 2243–2248. DOI: 10.1007/s00198-015-3154-6.
  • Liu, L.; Webster, T.J. In Situ Sensor Advancements for Osteoporosis Prevention, Diagnosis, and Treatment. Curr. Osteoporos. Rep. 2016, 14, 386–395. DOI: 10.1007/s11914-016-0339-7.
  • Pagani, F.; Francucci, C.M.; Moro, L. Markers of Bone Turnover: Biochemical and Clinical Perspectives. J. Endocrinol Invest 2005, 28, 8–13.
  • Parmar, B.J.; Longsine, W.; Sabonghy, E.P.; Han, A.; Tasciotti, E.; Weiner, B.K.; Righetti, R. Characterization of Controlled Bone Defects Using 2D and 3D Ultrasound Imaging Techniques. Phys Med Biol 2010, 55, 16.
  • Seibel, M.J.; Robins, S.P.; Bilezikian, J.P. Dynamics of Bone and Cartilage Metabolism: Principles and Clinical Applications. Academic Press, London, 2006.
  • Seibel, M.J. Biochemical Markers of Bone Turnover: Part I: Biochemistry and Variability. Clin. Biochem. Rev. 2005, 26, 97–122.
  • Morris, H.A.; Eastell, R.; Jorgensen, N.R.; Cavalier, E.; Vasikaran, S.; Chubb, S.A.P.; Kanis, J.A.; Cooper, C.; Makris, K. Clinical Usefulness of Bone Turnover Marker Concentrations in Osteoporosis. Clin. Chim. Acta 2017, 467, 34–41. DOI: 10.1016/j.cca.2016.06.036.
  • Reginster, J.-Y.; Collette, J.; Neuprez, A.; Zegels, B.; Deroisy, R.; Bruyere, O. Role of Biochemical Markers of Bone Turnover as Prognostic Indicator of Successful Osteoporosis Therapy. Bone 2008, 42, 832–836. DOI: 10.1016/j.bone.2008.01.021.
  • Hauschka, P.V.; Lian, J.B.; Cole, D.E.; Gundberg, C.M. Osteocalcin and Matrix Gla Protein: Vitamin K-Dependent Proteins in Bone. Physiol. Rev. 1989, 69, 990–1047. DOI: 10.1152/physrev.1989.69.3.990.
  • Hoang, Q.Q.; Sicheri, F.; Howard, A.J.; Yang, D.S.C. Bone Recognition Mechanism of Porcine Osteocalcin from Crystal Structure. Nature 2003, 425, 977–980. DOI: 10.1038/nature02079.
  • Lombardi, G.; Perego, S.; Luzi, L.; Banfi, G. A Four-Season Molecule: Osteocalcin. Updates in Its Physiological Roles. Endocrine 2015, 48, 394–404. DOI: 10.1007/s12020-014-0401-0.
  • Nimptsch, K.; Hailer, S.; Rohrmann, S.; Gedrich, K.; Wolfram, G.; Linseisen, J. Determinants and Correlates of Serum Undercarboxylated Osteocalcin. Ann. Nutr. Metab. 2008, 51, 6563–6570.
  • Power, M.J.; Fottrell, P.F. Osteocalcin: Diagnostic Methods and Clinical Applications. Crit. Rev. Clin. Lab. Sci. 1991, 28, 287–335. DOI: 10.3109/10408369109106867.
  • Delmas, P.D. Biochemical markers of bone remodeling. In: Papapoulos, Ed. Osteoporosis. Elsevier Science, Amsterdam, 1996; pp. 191–204.
  • Jagtap, V.R.; Ganu, J.V.; Nagane, N.S. BMD and Serum Intact Osteocalcin in Postmenopausal Osteoporosis Women. Ind. J. Clin. Biochem. 2011, 26, 70–73. DOI: 10.1007/s12291-010-0074-2.
  • Barton, A.C.; Davis, F.; Higson, S.P.J. Labeless Immunosensor Assay for the Stroke Marker Protein Neuron Specific Enolase Based upon an Alternating Current Impedance Protocol. Anal. Chem. 2008, 80, 9411–9416. DOI: 10.1021/ac801394d.
  • Ahlqvist, E.; Osmark, P.; Kuulasmaa, T.; Pilgaard, K.; Omar, B.; Brøns, C.; Kotova, O.; Zetterqvist, A.V.; Stancáková, A.; Jonsson, A.; et.al. A Link between GIP and Osteopontin in Adipose Tissue and Insulin Resistance. Diabetes 2013, 62, 2088–2094. DOI: 10.2337/db12-0976.
  • Berezin, A.E.; Kremzer, A.A. Circulating Osteopontin as a Marker of Early Coronary Vascular Calcifcation in Type Two Diabetes Mellitus Patients with Known Asymptomatic Coronary Artery Disease. Atherosclerosis 2013, 229, 475–481. DOI: 10.1016/j.atherosclerosis.2013.06.003.
  • Sekenis, T.; Garifallou, G.; Davis, G.Z.; Millner, F.; Pinacho, P.A.; D, G.; Sanchez-Baeza, F.; Marco, M.P.; Gibson, T.D.; Higson, S.P. Detection of Fluoroquinolone Antibiotics in Milk via a Labeless Immunoassay Based upon an Alternating Current Impedance Protocol. Anal. Chem. 2008, 80, 9233–9239. DOI: 10.1021/ac8014752.
  • Aydin, M.; Aydin, E.B.; Sezginturk, M.K. A Highly Selective Electrochemical Immunosensor Based on Conductive Carbon Black and Star PGMA Polymer Composite Material for IL-8 Biomarker Detection in Human Serum and Saliva, Biosens. Bioelectron 2018, 117, 720–728.
  • Lucarelli, F.; Marrazza, G.; Turner, A.P.F.; Mascin, M. Carbon and Gold Electrodes as Electrochemical Transducers for DNA Hybridisation Sensors. Biosens. Bioelectron. 2004, 19, 515–530. DOI: 10.1016/S0956-5663(03)00256-2.
  • Piperno, S.; Bui, B.T.S.; Haupt, K.; Gheber, L.A. Immobilization of Molecularly Imprinted Polymer Nanoparticles in Electrospun Poly (Vinylalcohol) Nanofibers. Langmuir 2011, 27, 1547–1550. DOI: 10.1021/la1041234.
  • Ozcan, B.; Sezginturk, M.K. A Novel Label Free Immunosensor Based on Single-Use ITO-PET Electrodes for Detection MAGE1 Protein. J. Electroanal. Chem. 2017, 792, 31–38.
  • Gutes, A.; Cespedes, F.; Alegret, S.; Del Valle, M. Determination of Phenolic Compounds by a Polyphenol Oxidase Amperometric Biosensor and Artificial Neural Network Analysis. Biosens. Bioelectron. 2005, 20, 1668–1673. DOI: 10.1016/j.bios.2004.07.026.
  • Lanzellotto, C.; Favero, G.; Antonelli, M.L.; Tortolini, C.; Cannistraro, S.; Coppari, E.; Mazzei, F. Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles: Preparation, Characterization and Analytical Applications. Biosens. Bioelectron. 2014, 55, 430–437. DOI: 10.1016/j.bios.2013.12.028.
  • Yagati, A.K.; Lee, T.; Min, J.; Choi, J.-W. An Enzymatic Biosensor for Hydrogen Peroxide Based on CeO2 Nanostructure Electrodeposited on ITO Surface. Biosens. Bioelectron. 2013, 47, 385–390. DOI: 10.1016/j.bios.2013.03.035.
  • Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. 1979, 101, 19–28. DOI: 10.1016/0368-1874(79)87084-7.
  • Khashayar, P.; Amoabediny, G.; Hosseini, M.; Verplancke, R.; Razi, F.; Vanfleteren, J.; Larijani, B. An Electrochemical Biosensor Based on AuNP-Modified Gold Electrodes for Selective Determination of Serum Levels of Osteocalcin. IEEE Sensors J. 2017, 17, 3367–3374. DOI: 10.1109/JSEN.2017.2684903.
  • Khashayar, P.; Amoabediny, G.; Larijani, B.; Hosseini, M.; Vanfleteren, J. Fabrication and Verification of Conjugated AuNP-Antibody Nanoprobe for Sensitivity Improvement in Electrochemical Biosensors. Sci. Rep. 2017, 7, 16070.
  • Lee, M.H.; Kim, H.Y.; Seo, Y.T.; Lee, K.N. Simple, Fast, and Quantitative Detection of Affinity Reaction of Osteocalcin Using Amperometric Method. IEEE 2014, 2, 772–775.
  • McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology. Blackwell Science, Oxford, 1997, ISBN 0865426848

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.