375
Views
17
CrossRef citations to date
0
Altmetric
Articles

Enhanced stability of immobilized keratinolytic protease on electrospun nanofibers

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Brandelli, A.; Sala, L.; Kalil, S.J. Microbial Enzymes for Bioconversion of Poultry Waste into Added-Value Products. Food Res. Int. 2015, 73, 3–12. DOI: 10.1016/j.foodres.2015.01.015.
  • Onifade, A.A.; Al-Sane, N.A.; Al-Musallam, A.A.; Al-Zarban, S. A Review: Potentials for Biotechnological Applications of Keratin-Degrading Microorganisms and Their Enzymes for Nutritional Improvement of Feathers and Other Keratins as Livestock Feed Resources. Bioresource Technol. 1998, 66, 1–11. DOI: 10.1016/S0960-8524(98)00033-9.
  • Ichida, J.M.; Krizova, L.; Lefevre, C.A.; Keener, H.M.; Elwell, D.L.; Burtt, E.H. Bacterial Inoculum Enhances Keratin Degradation and Biofilm Formation in Poultry Compost. J. Microbiol. Meth. 2001, 47, 199–208. DOI: 10.1016/S0167-7012(01)00302-5.
  • Bradbury, J.H. The Structure and Chemistry of Keratin Fibers. Adv. Prot. Chem. 1973, 67, 111–211. DOI: 10.1016/S0065-3233(08)60447-7.
  • Parry, D.A.D.; North, A.C.T. Hard α-Keratin Intermediate Filament Chains: Substructure of the N-and C-Terminal Domains and the Predicted Structure and Function of the C-Terminal Domains of Type I and Type II Chains. J. Struct. Biol. 1998, 122, 67–75. DOI: 10.1006/jsbi.1998.3967.
  • Kim, J.D. Purification and Characterization of a Keratinase from a Feather-Degrading Fungus, Aspergillusflavus Strain K-03. Mycobiology 2007, 35, 219–225. DOI: 10.4489/MYCO.2007.35.4.219.
  • Wang, X.; Parsons, C.M. Effect of Processing Systems on Protein Quality of Feather Meal and Hog Hair Meals. Poultry Sci. 1997, 76, 491–496. DOI: 10.1093/ps/76.3.491.
  • Latshaw, J.D.; Musharaf, N.; Retrum, R. Processing of Feather Meal to Maximize Its Nutritional Value of Poultry. Animal Feed Sci. Technol. 1994, 47, 179–188. DOI: 10.1016/0377-8401(94)90122-8.
  • Eggum, B.O. Evaluation of Protein Quality of Feather Meal under Different Treatments. Acta Agricul. Scand. 1970, 20, 230–234. DOI: 10.1080/00015127009433412.
  • Rani, G.; Priya, R. Microbial Keratinases and Their Prospective Applications: An Overview. Appl. Microbiol. Biotechnol. 2006, 70, 21. DOI: 10.1007/s00253-005-0239-8.
  • Sangali, S.; Brandelli, A. Feather Keratin Hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 2000, 89, 735–743. DOI: 10.1046/j.1365-2672.2000.01173.x.
  • Manczinger, L.; Rozs, M.; Vagvolgyi, C.S.; Kevei, F. Isolation and Characterization of a New Keratinolytic Bacillus licheniformis Strain. World J. Microbiol. Biotechnol. 2003, 19, 35–39. DOI: 10.1023/A:1022576826372.
  • Thys, R.C.S.; Lucas, F.S.; Riffel, A.; Heeb, P.; Brandelli, A. Characterization of a Protease of a Feather-Degrading Microbacterium Species. Lett. Appl. Microbiol. 2004, 39, 181–186. DOI: 10.1111/j.1472-765X.2004.01558.x.
  • Nagal, S.; Jain, P.C. Feather Degradation by Strains of Bacillus Isolated from Decomposing Feathers. Braz. J. Microbiol. 2010, 41, 196–200. DOI: 10.1590/S1517-838220100001000028.
  • Odetallah, N.H.; Wang, J.J.; Garlich, J.D.; Shih, J.C.H. Keratinase in Starter Diets Improves Growth of Broiler Chicks. J. Poult. Sci. 2003, 82, 664–670. DOI: 10.1093/ps/82.4.664.
  • Thanikaivelan, P.; Rao, J.R.; Nair, B.U.; Ramasami, T. Progress and Recent Trends in Biotechnological Methods for Leather Processing. Trends. Biotechnol. 2004, 22, 181–188. DOI: 10.1016/j.tibtech.2004.02.008.
  • Wu, D.; Samanta, A.; Srivastava, R.K.; Hakkarainen, M. Starch-Derived Nanographene Oxide Paves the Way for Electrospinnable and Bioactive Starch Scaffolds for Bone Tissue Engineering. Biomacromolecules 2017, 18, 1582–1591. DOI: 10.1021/acs.biomac.7b00195.
  • Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185–205. DOI: 10.1007/s12154-013-0102-9.
  • Yan, F.; Huang, X. J.; Chen, P. C.; Xu, Z. K. Polymer Materials for Enzyme Immobilization and Their Application in Bioreactors. BMB Rep. 2011, 44, 87–95. DOI: 10.5483/BMBRep.2011.44.2.87.
  • Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Ahmed, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. DOI: 10.3390/molecules201219884.
  • Fathollahipour, S.; Abouei Mehrizi, A.; Ghaee, A.; Koosha, M. Electrospinning of PVA/Chitosannanocompositenanofibers Containing Gelatin Nanoparticles as a Dual Drug Delivery System. J. Biomed. Mater. Res. 2015, 103, 3852–3862. DOI: 10.1002/jbm.a.35529.
  • Lin, T.; Fang, J.; Wang, H.; Cheng, T.; Wang, X. Using Chitosan as a Thickener for Electrospinning Dilute PVA Solutions to Improve Fibre Uniformity. Nanotechnology 2006, 17, 3718–3723. DOI: 10.1088/0957-4484/17/15/017.
  • Kim, W.K.; Lorenz, E.S.; Patterson, P.H. Effect of Enzymatic and Chemical Treatments on Feather Solubility and Digestibility. Poultry Sci. 2002, 81, 95–98. DOI: 10.1093/ps/81.1.95.
  • Sarath, G.; Motte, R.S.D.L.; Wagner, F.W. Proteolytic Enzymes: A Practical Approach, Beynon, R.J.; Bond, J.S., eds. IRL Press: New York, 1989.; pp. 25–55.
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Paipitaka, K.; Pornprac, T.; Mongkontalangc, P.; Techitdheera, W.; Pecharapaa, W. 2nd International Science, Social-Science, Engineering and Energy Conference 2010: Engineering Science and Management Characterization of PVA-Chitosan Nanofibers Prepared by Electrospinning. Procedia Eng. 2011, 8, 101–105. DOI: 10.1016/j.proeng.2011.03.019.
  • Wang, Y.; Hsieh, Y.L. Immobilization of Lipase Enzyme in Polyvinyl Alcohol (PVA) Nanofibrous Membranes. J. Memb. Sci. 2008, 309, 73–81. DOI: 10.1016/j.memsci.2007.10.008.
  • Shweta, G.; Yogesh, K.; Kripal, S.; Bhattacharya, A. Lipase Immobilized on Poly (Vinyl Alcohol) Modified Polysulfone Membrane: Application in Hydrolytic Activities for Olive Oil. Polym. Bull. 2010, 64, 141–158. DOI: 10.1007/s00289-009-0141-0.
  • Ni, H.; Chen, Q.H.; Chen, F.; Fu, M.; Dong, Y.; Cai, H. Improved Keratinase Production for Feather Degradation by Bacillus licheniformis ZJUEL31410 in Submerged Cultivation. Afr. J. Biotechnol. 2011, 10, 7236–7244. DOI: 10.5897/AJB11.168.
  • Tiwary, E.; Gupta, R. Medium Optimization for a Novel 58 kDadimerickeratinase from Bacillus licheniformis ER-15: Biochemical Characterization and Application in Feather Degradation and Dehairing of Hides. Bioresource Technol. 2010, 101, 6103–6110. DOI: 10.1016/j.biortech.2010.02.090.
  • Kim, J.M.; Lim, W.J.; Suh, H.J. Feather-Degrading Bacillus Species from Poultry Waste. Process Biochem. 2001, 37, 287–291. DOI: 10.1016/S0032-9592(01)00206-0.
  • de Oliveira, C.T.; Pellenz, L.; Pereira, J.Q.; Brandelli, A.; Daroit, D.J. Screening of Bacteria for Protease Production and Feather Degradation. Waste Biomass Valor. 2016, 7, 447. DOI: 10.1007/s12649-015-9464-2.
  • Fakhfakh-Zouari, N.; Haddar, A.; Hmidet, N.; Frikha, F.; Nasri, M. Application of Statistical Experimental Design for Optimization of Keratinases Production by Bacillus pumilus A1 Grown on Chicken Feather and Some Biochemical Properties. Process Biochem. 2010, 45, 617–626. DOI: 10.1016/j.procbio.2009.12.007.
  • Bhushani, J.A.; Anandharamakrishnan, C. Electrospinning and Electrospraying Techniques: Potential Food Based Applications. Trends Food Sci. Technol. 2014, 38, 1–13. DOI: 10.1016/j.tifs.2014.03.004.
  • Kheradmandi, M.; Ebrahim, V.F.; Ali, G.; Fariba, G. Skeletal Muscle Regeneration via Engineered Tissue Culture over Electrospunnanofibrous Chitosan/PVA Scaffold. J. Biomed. Mater. Res. A. 2016, 104, 1720–1727. DOI: 10.1002/jbm.a.35702.
  • Jia, Y.T.; Gong, J.; Gu, X.H.; Kim, H.Y.; Dong, J.; Shen, X.Y. Fabrication and Characterization of Poly (Vinyl Alcohol)/Chitosan Blend Nanofibers Produced by Electrospinning Method. Carbohyd. Polym. 2007, 67, 403–409. DOI: 10.1016/j.carbpol.2006.06.010.
  • Dwevedi, A. Enzyme Immobilization: Advances in Industry, Agriculture, Medicine and the Environment. Basics of Enzyme Immobilization; Springer International Publishing, Switzerland 2016.; pp. 21–44, ISBN: 978-3-319-41416-4.
  • Dincer, A.; Telefoncu, A. Improving the Stability of Cellulase by Immobilization on Modified Polyvinyl Alcohol Coated Chitosan Beads. J. Mol.Catal. B: Enzym. 2007, 45, 10–14. DOI: 10.1016/j.molcatb.2006.10.005.
  • Xu, R.; Zhou, Q.; Li, F.; Zhang, B. Laccase Immobilization on Chitosan/Poly(Vinyl Alcohol) Composite Nanofibrous Membranes for 2,4-Dichlorophenol Removal. Chem. Eng. J. 2013, 222, 321–329. DOI: 10.1016/j.cej.2013.02.074.
  • Huang, X.J.; Dan, G.E.; Xu, Z.K. Preparation and Characterization of Stable Chitosan Nanofibrous Membrane for Lipase Immobilization. J. Mol. Catal. B: Enzym. 2007, 45, 10–14. DOI: 10.1016/j.eurpolymj.2007.06.010.
  • Kajiuchi, T.; Park, J.W. Characteristics of Cellulase Modified with a Copolymer of Polyethylene Glycol Derivative and Maleic Acid Anhydride. J. Chem. Eng. Japan. 1992, 2, 202–206. DOI: 10.1252/jcej.25.202.
  • Cerreti, M.; Markosov, K.; Esti, M.; Rosenberg, M.; Rebro, M. Immobilisation of Pectinases into PVA Gel for Fruit Juice. Int. J. Food Sci. Technol. 2017, 52, 531–539. DOI: 10.1111/ijfs.13309.
  • Barberis, S.; Quiroga, E.; Morcelle, S.; Priolo, N.; Luco, J.M. 2006. Study of Phytoproteases Stability in Aqueous-Organic Biphasic Systems Using Linear Free Energy Relationships. J. Mol. Catal. B: Enzym. 2006, 38, 95–103. DOI: 10.1016/j.molcatb.2005.11.011.
  • Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223. DOI: 10.1039/C3CS60075K.
  • Wan, Y.-Y.; Lu, R.; Xiao, L.; Du, Y.-M.; Miyakoshi, T.; Chen, C.-L.; Knill, C.J.; Kennedy, J.F. Effects of Organic Solvents on the Activity of Free and Immobilised Laccase from Rhusvernicifera. Int. J. Biol. Macromol. 2010, 47, 488–495. DOI: 10.1016/j.ijbiomac.2010.07.003.
  • Sheldon, R.A. Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Org. Process Res. Dev. 2011, 15, 213–223. DOI: 10.1021/op100289f.
  • Moradzadegan, A.; Ranaei-Siadat, S.-O.; Ebrahim-Habibi, A.; Barshan-Tashnizi, M.; Jalili, R.; Torabi, S.-F.; Khajeh, K. Immobilization of Acetylcholinesterase in Nanofibrous PVA/BSA Membranes by Electrospinning. Eng. Life Sci. 2010, 10, 57–64. DOI: 10.1002/elsc.200900001.
  • Moreno-Cortez, I.E.; Jorge, R.G.; Virgilio, G.G.; Domingo, I.G.G.; Marco, A.G.N.; Rodolfo, C.S. Encapsulation and Immobilization of Papain in Electrospunnanofibrous Membranes of PVA Cross-Linked with Glutaraldehyde Vapour. Mater. Sci. Eng. C. 2015, 52, 306–314. DOI: 10.1016/j.msec.2015.03.049.
  • Shinde, P.; Musameh, M.; Gao, Y.; Robinson, A.J.; Kyratzis, I.(L.). Immobilization and Stabilization of Alcohol Dehydrogenase on Polyvinyl Alcohol Fibre. Biotechnol. Rep. 2018, 19, e00260. DOI: 10.1016/j.btre.2018.e00260.
  • Paul, T.; Halder, S.K.; Arpan, D.; Surojit, B.; Chiranjit, M.; Arpita, M.; Partha, S.D.; Pradeep, K.D.M.; Bikas, R.P.; Keshab, C.M. Exploitation of Chicken Feather Waste as a Plant Growth Promoting Agent Using Keratinase Producing Novel Isolate Paenibacilluswoosongensis TKB2. Biocatal. Agri. Biotechnol. 2013, 2, 50–57. DOI: 10.1016/j.bcab.2012.10.001.
  • Reimschuessel, A.C. Scanning Electron Microscopy - Part I. J. Chem. Edu. 1972, 49, 413. DOI: 10.1021/ed049pA413.
  • Calin, M.; Diana, C.A.; Alexandrescu, E.; Raut, I.; Doni, M.B.; Arsene, M.L.; Oancea, F.; Jecu, L.; Veronica, L.M. Degradation of Keratin Substrate by Keratinolytic Fungi. Electronic J. Biotechnol. 2017, 28, 101–112. DOI: 10.1016/j.ejbt.2017.05.007.
  • Lo, W.H.; Too, J.R.; Wu, J.Y. Production of Keratinolytic Enzyme by an Indigenous Feather Degrading Strain Bacillus cereus. J. Biosci. Bioeng. 2012, 114, 640–647. DOI: 10.1016/j.jbiosc.2012.07.014.
  • Gupta, S.; Singh, R. Hydrolyzing Proficiency of Keratinases in Feather Degradation. Indian J. Microbiol. 2014, 54, 466–470. DOI: 10.1007/s12088-014-0477-5.
  • Paul, T.; Das, A.; Mandal, A.; Halder, S.K.; Mohapatra, P.K.D.; Pati, B.R.; Mondal, K.C. Valorization of Chicken Feather Waste for Concomitant Production of Keratinase, Oligopeptides and Essential Amino Acids under Submerged Fermentation by Paenibacillus woosongensis TKB2. Waste Biomass Valor. 2014, 5, 575–584. DOI: 10.1007/s12649-013-9267-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.