321
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluation of droplet-based microfluidic platforms as a convenient tool for lipases and esterases assays

, , &

References

  • Leskovac, V. Comprehensive Enzyme Kinetics; Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2003.
  • Schmidt, M.; Bornscheuer, U.T. High-Throughput Assays for Lipases and Esterases. Biomol. Eng. 2005, 22, 51–56. DOI: 10.1016/j.bioeng.2004.09.004.
  • Cieplak, M.; Ostaszewski, R. Polymer Membrane Ion-Selective Electrodes as a Convenient Tool for Lipases and Esterases Assays. Prep. Biochem. Biotechnol. 2017, 47, 673–677. DOI: 10.1080/10826068.2017.1303611.
  • Reetz, M.T.; Becker, M.H.; Klein, H.W.; Stockigt, D. A Method for High-Throughput Screening of Enantioselective Catalysts. Angew. Chem. Int. Ed. Engl. 1999, 38, 1758–1761. DOI: 10.1002/(SICI)1521-3773.
  • Traverse, J.F.; Snapper, M.L. High-Throughput Methods for the Development of New Catalytic Asymmetric Reactions. Drug Discov. Today. 2002, 7, 1002–1012. DOI: 10.1016/S1359-6446(02)02436-4.
  • Goddard, J.P.; Reymond, J.L. Enzyme Assays for High-Throughput Screening. Curr. Opin. Biotechnol. 2004, 15, 314–322. DOI: 10.1016/j.copbio.2004.06.008.
  • Ostaszewski, R.; Koszelewski, D.; Kurek, W.; Piotrowska, O. Method for Detection and/or Assay of Lovastatin Esterase with Use of Fluorogenic/Chromogenic Reagent, Lovastatin Esterase Isolated and/or Purified by this Method, Assembly for Detection and/or Assay and Use of Fluorogenic/Chromogenic Reagent for Detection and/or Assay of Lovastatin Esterase. WO2009067031A1, (issued May 28, 2009).
  • Zadlo, A.; Koszelewski, D.; Borys, F.; Ostaszewski, R. Evaluation of Pseudoenantiomeric Mixed Carbonates as Efficient Fluorogenic Probes for Enantioselectivity Screening. ChemBioChem. 2016, 17, 71–76. DOI: 10.1002/cbic.201500509.
  • Zadlo, A.; Koszelewski, D.; Borys, F.; Ostaszewski, R. Mixed Carbonates as Useful Substrates for a Fluorogenic Assay for Lipases and Esterases. ChemBioChem. 2015, 16, 677–682. DOI: 10.1002/cbic.201402528.
  • Zadlo-Dobrowolska, A.; Szczygiel, M.; Koszelewski, D.; Paprocki, D.; Ostaszewski, R. Self-Immolative Versatile Fluorogenic Probes for Screening of Hydrolytic Enzyme Activity. Org. Biomol. Chem. 2016, 14, 9146–9150. DOI: 10.1039/C6OB01488G.
  • Clausell-Tormos, J.; Griffiths, A.D.; Merten, C.A. An Automated Two-Phase Microfluidic System for Kinetic Analyses and the Screening of Compound Libraries. Lab. Chip. 2010, 10, 1302–1307. DOI: 10.1039/b921754a.
  • de Boer, A.R.; Bruyneel, B.; Krabbe, J.G.; Lingeman, H.; Niessen, W.M.; Irth, H. A Microfluidic-Based Enzymatic Assay for Bioactivity Screening Combined with Capillary Liquid Chromatography and Mass Spectrometry. Lab. Chip. 2005, 5, 1286–1292. DOI: 10.1039/b506559c.
  • Hadd, A. G.; Raymond, D. E.; Halliwell, J. W.; Jacobson, S. C.; Ramsey, J. M. Microchip Device for Performing Enzyme Assays. Anal. Chem. 1997, 69, 3407–3412. DOI: 10.1021/ac970192p.
  • Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J. B.; Demello, A. J. Microdroplets: A Sea of Applications? Lab. Chip. 2008, 8, 1244–1254. DOI: 10.1039/b806405a.
  • Matsuura, S.; Yokoyama, T.; Ishii, R.; Itoh, T.; Tomon, E.; Hamakawa, S.; Tsunoda, T.; Mizukami, F.; Nanbu, H.; Hanaoka, T.A. An Enzyme-Encapsulated Microreactor for Efficient Theanine Synthesis. Chem. Commun. 2012, 48, 7058–7060. DOI: 10.1039/c2cc32271d.
  • Miller, O.J.; El Harrak, A.; Mangeat, T.; Baret, J.C.; Frenz, L.; El Debs, B.; Mayot, E.; Samuels, M.L.; Rooney, E.K.; Dieu, P.; et al. High-Resolution Dose-Response Screening Using Droplet-Based Microfluidics. Proc. Natl. Acad. Sci. USA. 2012, 109, 378–383. DOI: 10.1073/pnas.1113324109.
  • Lineweaver, H.; Burk, D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934, 56, 658–666. DOI: 10.1021/ja01318a036.
  • Song, H.; Ismagilov, R.F. Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents. J. Am. Chem. Soc. 2003, 125, 14613–14619. DOI: 10.1021/ja0354566.
  • Damean, N.; Olguin, L.F.; Hollfelder, F.; Abell, C.; Huck, W.T. Simultaneous Measurement of Reactions in Microdroplets Filled by Concentration Gradients. Lab. Chip. 2009, 9, 1707–1713. DOI: 10.1039/b821021g.
  • Jambovane, S.; Duin, E.C.; Kim, S.K.; Hong, J.W. Determination of Kinetic Parameters, Km and Kcat, with a Single Experiment on a Chip. Anal. Chem. 2009, 81, 3239–3245. DOI: 10.1021/ac8020938.
  • Bui, M.-P.N.; Li, C.A.; Han, K.N.; Choo, J.; Lee, E.K.; Seong, G.H. Enzyme Kinetic Measurements Using a Droplet-Based Microfluidic System with a Concentration Gradient. Anal. Chem. 2011, 83, 1603–1608. DOI: 10.1021/ac102472a.
  • Gielen, F.; Buryska, T.; Van Vliet, L.; Butz, M.; Damborsky, J.; Prokop, Z.; Hollfelder, F. Interfacing Microwells with Nanoliter Compartments: A Sampler Generating High-Resolution Concentration Gradients for Quantitative Biochemical Analyses in Droplets. Anal. Chem. 2015, 87, 624–632. DOI: 10.1021/ac503336g.
  • Gielen, F.; van Vliet, L.; Koprowski, B.T.; Devenish, S.R.A.; Fischlechner, M.; Edel, J.B.; Niu, X.; deMello, A.J.; Hollfelder, F. A Fully Unsupervised Compartment-on-Demand Platform for Precise Nanoliter Assays of Time-Dependent Steady-State Enzyme Kinetics and Inhibition. Anal. Chem. 2013, 85, 4761–4769. DOI: 10.1021/ac400480z.
  • Han, Z.; Li, W.; Huang, Y.; Zheng, B. Measuring Rapid Enzymatic Kinetics by Electrochemical Method in Droplet-Based Microfluidic Devices with Pneumatic Valves. Anal. Chem. 2009, 81, 5840–5845. DOI: 10.1021/ac900811y.
  • Churski, K.; Korczyk, P.; Garstecki, P. High-Throughput Automated Droplet Microfluidic System for Screening of Reaction Conditions. Lab. Chip. 2010, 10, 816. DOI: 10.1039/b925500a.
  • Tice, J.D.; Song, H.; Lyon, A.D.; Ismagilov, R.F. Formation of Droplets and Mixing in Multiphase Microfluidics at Low Values of the Reynolds and the Capillary Numbers. Langmuir. 2003, 19, 9127–9133. DOI: 10.1021/la030090w.
  • Korczyk, P.M.; Dolega, M.E.; Jakiela, S.; Jankowski, P.; Makulska, S.; Garstecki, P. Scaling up the Throughput of Synthesis and Extraction in Droplet Microfluidic Reactors. J Flow Chem. 2015, 5, 110–118. DOI: 10.1556/JFC-D-14-00038.
  • Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the LambertW Function. Adv. Comput. Math. 1996, 5, 329–359. DOI: 10.1007/BF02124750.
  • Goudar, C.T.; Harris, S.K.; McInerney, M.J.; Suflita, J.M. Progress Curve Analysis for Enzyme and Microbial Kinetic Reactions Using Explicit Solutions Based on the Lambert W Function. J Microbiol Meth. 2004, 59, 317–326. DOI: 10.1016/j.mimet.2004.06.013.
  • Goudar, C. T.; Sonnad, J. R.; Duggleby, R. G. Parameter Estimation Using a Direct Solution of the Integrated Michaelis–Menten Equation. Biochim. Biophys. Acta Protein Struct. Molec. Enzym. 1999, 1429, 377–383. DOI: 10.1016/S0167-4838(98)00247-7.
  • Schnell, S.; Maini, P.K. A Century of Enzyme Kinetics: Reliability of the KM and Vmax Estimates. Comments Theor. Biol. 2003, 8, 169–187. DOI: 10.1080/08948550390206768.
  • Schnell, S.; Mendoza, C. Closed Form Solution for Time-Dependent Enzyme Kinetics. J Theor. Biol. 1997, 187, 207–212. DOI: 10.1006/jtbi.1997.0425.
  • Barry, D.A.; Barry, S.J.; Culligan-Hensley, P.J. Algorithm 743: WAPR–a Fortran Routine for Calculating Real Values of the W-Function. ACM Trans. Math. Softw. 1995, 21, 172–181. DOI: 10.1145/203082.203088.
  • Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind. Appl. Math. 1963, 11, 431–441. DOI: 10.1137/0111030.
  • Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes. 3rd ed.; Cambridge University Press, New York, 2007.
  • Robinson, J. A.; Characklis, W. G. Simultaneous Estimation ofV Max, K m, and the Rate of Endogenous Substrate Production (R) from Substrate Depletion Data. Microb. Ecol. 1984, 10, 165–178. DOI: 10.1007/BF02011423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.