541
Views
16
CrossRef citations to date
0
Altmetric
Articles

Optimization of the extraction of polyphenols and antioxidant activity from Malva parviflora L. leaves using Box–Behnken design

&

References

  • Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols During Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. DOI: 10.1016/j.ifset.2017.12.006.
  • Khalifa, I.; Zhu, W.; Li, K.; Li, C. Polyphenols of Mulberry Fruits as Multifaceted Compounds: Compositions, Metabolism, Health Benefits, and Stability—A Structural Review. J. Funct. Foods. 2018, 40, 28–43. DOI: 10.1016/j.jff.2017.10.041.
  • Solari-Godiño, A.; Pérez-Jiménez, J.; Saura-Calixto, F.; Borderías, A.J.; Moreno, H.M. Anchovy Mince (Engraulis ringens) Enriched with Polyphenol-Rich Grape Pomace Dietary Fibre: In Vitro Polyphenols Bioaccessibility, Antioxidant and Physico-Chemical Properties. Food Res. Int. 2017, 102, 639–646. DOI: 10.1016/j.foodres.2017.09.044.
  • Rojas, R.; González-Hernández, M.D.; Castro-López, C.; Ventura-Sobrevilla, J.M.; Ascacio-Valdés, J.A.; Martínez-Ávila, G.C.G.; Aguilar, C.N. Impact of Extraction Techniques on Antioxidant Capacities and Phytochemical Composition of Polyphenol-Rich Extracts. Food Chem. 2017, 237, 1139–1148. DOI: 10.1016/j.foodchem.2017.06.032.
  • Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology. Sep. Purif. Technol. 2018, 194, 40–47. DOI: 10.1016/j.seppur.2017.11.032.
  • Rodrigues, S.; Fernandes, F.A.N.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound Extraction of Phenolics and Anthocyanins from Jabuticaba Peel. Ind. Crops Prod. 2015, 69, 400–407. DOI: 10.1016/j.indcrop.2015.02.059.
  • Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ultrasound Assisted Extraction of Bioactive Compounds from Nephelium lappaceum L. Fruit Peel Using Central Composite Face Centered Response Surface Design. Arab. J. Chem. 2017, 10, S1145–S1157. DOI: 10.1016/j.arabjc.2013.02.007.
  • Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the Solvent Extraction of Phenolic Antioxidants from Fruits of Euterpe oleracea Using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. DOI: 10.1016/j.biortech.2009.03.083..
  • Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous Optimization of the Ultrasound-Assisted Extraction for Phenolic Compounds Content and Antioxidant Activity of Lycium ruthenicum Murr. Fruit Using Response Surface Methodology. Food Chem. 2018, 242, 1–8. DOI: 10.1016/j.foodchem.2017.08.105.
  • Prabhu, A.A.; Jayadeep, A. Optimization of Enzyme-Assisted Improvement of Polyphenols and Free Radical Scavenging Activity in Red Rice Bran: A Statistical and Neural Network-Based Approach. Prep. Biochem. Biotechnol. 2017, 47, 397–405. DOI: 10.1080/10826068.2016.1252926.
  • Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of Microwave-Assisted Extraction of Flavonoids and Antioxidants from Vernonia amygdalina Leaf Using Response Surface Methodology. Food Bioprod. Process. 2018, 107, 36–48. DOI: 10.1016/j.fbp.2017.10.007.
  • Michael, P.J.; Steadman, K.J.; Plummer, J.A. The Biology of Australian Weeds 52. Malva parviflora L. Plant Prot. Q. 2009, 24, 1–9.
  • Fakhfakh, N.; Abdelhedi, O.; Jdir, H.; Nasri, M.; Zouari, N. Isolation of Polysaccharides from Malva aegyptiaca and Evaluation of Their Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2017, 105, 1519–1525. DOI: 10.1016/j.ijbiomac.2017.07.105.
  • Bilgin, M.; Elhussein, E.A.A.; Özyürek, M.; Güçlü, K.; Şahin, S. Optimizing the Extraction of Polyphenols from Sideritis montana L. using Response Surface Methodology. J. Pharm. Biomed. Anal. 2018, 158, 137–143. DOI: 10.1016/j.jpba.2018.05.039.
  • Escobedo-Flores, Y.; Chavez-Flores, D.; Salmeron, I.; Molina-Guerrero, C.; Perez-Vega, S. Optimization of Supercritical Fluid Extraction of Polyphenols from Oats (Avena sativa L.) and Their Antioxidant Activities. J. Cereal Sci. 2018, 80, 198–204. DOI DOI: : 10.1016/j.jcs.2018.03.002.
  • Zhou, Z.; Shao, H.; Han, X.; Wang, K.; Gong, C.; Yang, X. The Extraction Efficiency Enhancement of Polyphenols from Ulmus pumila L. Barks by Trienzyme-Assisted Extraction. Ind. Crops Prod. 2017, 97, 401–408. DOI: 10.1016/j.indcrop.2016.12.060.
  • Baş, D.; Boyacı, İH. Modeling and Optimization I: Usability of Response Surface Methodology. J. Food Eng. 2007, 78, 836–845. DOI: 10.1016/j.jfoodeng.2005.11.024.
  • Rambo, D.F.; Biegelmeyer, R.; Toson, N.S.B.; Dresch, R.R.; Moreno, P.R.H.; Henriques, A.T. Box–Behnken Experimental Design for Extraction Optimization of Alkaloids from Erythrina verna Vell. trunk Barks and LC Method Validation. Ind. Crops Prod. 2019, 133, 250–258. DOI DOI: .org/10.1016/j.indcrop.2019.03.030.
  • dos Santos, W.N.L.; da Silva, E.G.P.; David, J.M.; Ferreira, S.L.C.; Brandão, G.C.; dos Reis, P.S.; Matos, G.D.; Portugal, L.A.; Souza, A.S.; Bruns, R.E.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597, 179–186. DOI: 10.1016/j.aca.2007.07.011..
  • Granato, D.; de Araújo Calado, V.Ô.M.; Jarvis, B. Observations on the Use of Statistical Methods in Food Science and Technology. Food Res. Int. 2014, 55, 137–149. DOI: 10.1016/j.foodres.2013.10.024.
  • Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiment; Wiley: Hoboken, New Jersey, 2009.
  • Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of Pigment and Flavanol Content with Antioxidant Properties in Selected Aged Regional Wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. DOI: 10.1006/jfca.2002.1070.
  • Malterud, K.E.; Farbrot, T.L.; Huse, A.E.; Sund, R.B. Antioxidant and Radical Scavenging Effects of Anthraquinones and Anthrones. Pharmacology. 1993, 47, 77–85. DOI: 10.1159/000139846.
  • Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts and the Effect of Hydrolysis Conditions. Food Chem. 2006, 95, 466–473. DOI: 10.1016/j.foodchem.2005.01.032.
  • Rai, A.; Mohanty, B.; Bhargava, R. Supercritical Extraction of Sunflower Oil: A Central Composite Design for Extraction Variables. Food Chem. 2016, 192, 647–659. DOI: 10.1016/j.foodchem.2015.07.070.
  • Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Limonium sinuatum: Optimization and Comparison with Conventional Methods. Food Chem. 2017, 217, 552–559. DOI: 10.1016/j.foodchem.2016.09.013.
  • Yang, L.; Cao, Y.L.; Jiang, J.G.; Lin, Q.S.; Chen, J.; Zh, L. Response Surface Optimization of Ultrasound-Assisted Flavonoids Extraction from the Flower of Citrus aurantium L. var. amara Engl. J. Sep. Sci. 2010, 33, 1349–1355. DOI: 10.1002/jssc.200900776.
  • Ly, M.; Margaritis, A.; Jajuee, B. Effect of Solvent Concentration on the Extraction Kinetics and Diffusivity of Cyclosporin a in the Fungus Tolypocladium inflatum. Biotechnol. Bioeng. 2007, 96, 67–79. DOI: 10.1002/bit.21198.
  • Xu, Y.; Pan, S. Effects of Various Factors of Ultrasonic Treatment on the Extraction Yield of All-Trans-Lycopene from Red Grapefruit (Citrus paradise Macf.). Ultrason. Sonochem. 2013, 20, 1026–1032. DOI: 10.1016/j.ultsonch.2013.01.006.
  • Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta. 2011, 703, 8–18. DOI: 10.1016/j.aca.2011.07.018.
  • Šavikin, K.P.; Zdunić, G.M.; Đorđević, V.B.; Bugarski, B.M.; Gođevac, D.M.; Jovanović, A.A.; Pljevljakušić, D.S. Optimization of the Extraction Process of Polyphenols from Thymus serpyllum L. herb Using Maceration, Heat- and Ultrasound-Assisted Techniques. Sep. Purif. Technol. 2017, 179, 369–380. DOI: 10.1016/j.seppur.2017.01.055.
  • Afolayan, A.J.; Aboyade, O.M.; Sofidiya, M.O. Total Phenolic Content and Free Radical Scavenging Activity of Malva parviflora L. (Malvaceae). J. Biol. Sci. 2008, 8, 945–949. DOI: 10.3923/jbs.2008.945.949.
  • Bouriche, H.; Meziti, H.; Senator, A.; Arnhold, J. Anti-Inflammatory, Free Radical-Scavenging, and Metal-Chelating Activities of Malva parviflora. Pharm. Biol. 2011, 49, 942–946. DOI: 10.3109/13880209.2011.558102.
  • Piluzza, G.; Bullitta, S. Correlations between Phenolic Content and Antioxidant Properties in Twenty-Four Plant Species of Traditional Ethnoveterinary Use in the Mediterranean Area. Pharm Biol. 2011, 49, 240–247. DOI: 10.3109/13880209.
  • Jeganathan, P.M.; Venkatachalam, S.; Karichappan, T.; Ramasamy, S. Model Development and Process Optimization for Solvent Extraction of Polyphenols from Red Grapes Using Box-Behnken Design. Prep. Biochem. Biotechnol. 2014, 44, 56–67. DOI: 10.1080/10826068.2013.791629.
  • Terninko, I.I.; Nemyatykh, O.D.; Sakipova, Z.B.; Kuldyrkaeva, E.V.; Onishschenko, U.E. Phytochemical and Pharmacological Vectors from Malva sylvestris L. for Application in Dermatological Practice. Pharm. Pharm. Chem. J. 2017, 50, 805–809. DOI: -10.1007/s11094-017-15360. DOI: 10.1007/s11094-017-1536-0.
  • Ben Saad, A.; Rjeibi, I.; Brahmi, D.; Smida, A.; Ncib, S.; Zouari, N.; Zourgui, L. Malva sylvestris Extract Protects upon Lithium Carbonate-Induced Kidney Damages in Male Rat. Biomed. Pharmacother. 2016, 84, 1099–1107. DOI: 10.1016/j.biopha.2016.10.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.