108
Views
2
CrossRef citations to date
0
Altmetric
Articles

Five-factor-at-a-time (FFAT) approach for optimal production of an extracellular RNase from Bacillus safensis RB-5

&

References

  • Robinson, P. K. Enzymes: Principles and Biotechnological Applications. Essay Biochem. 2015, 59, 1–41.
  • Kumar, R.; Kanwar, S. S. Ribonuclease as Anticancer Therapeutics. Enz. Eng. 2017, 6, 1–9.
  • Kumar, R.; Kanwar, S. S. New Contenders for Anticancer Therapeutics: Microbial Ribonucleases. Adv. Biotech. Micro. 2018, 8, MS.ID.555739.
  • Zhang, R.; Tian, G.; Zhao, Y.; Zhao, L.; Wang, H.; Gong, Z.; Ng, T. B. A Novel Ribonuclease with HIV-1 Reverse Transcriptase Inhibitory Activity Purified from the Fungus Ramaria formosa. J. Basic Microbiol. 2015, 55, 269–275.
  • Anbu, P.; Gopinath, S. C. B.; Cihan, A. C.; Chaulagain, B. P. Microbial Enzymes and Their Applications in Industries and Medicine. Biomed. Res. Int. 2013, 2013, 1–3.
  • Sokurenko, Y.; Nadyrova, A.; Ulyanova, V.; Ilinskaya, Q. Extracellular Ribonuclease from Bacillus licheniformis (Balifase), a New Member of the N1/T1 RNase Superfamily. Biomed. Res. Int. 2016, 2016, 1–9.
  • Khusro, A.; Kaliyan, B. K.; Al-Dhabi, N. A.; Arasu, M. V.; Agastian, P. Statistical Optimization of Thermo-Alkali Stable Xylanase Production from Bacillus tequilensis Strain ARMATI. Electron. J. Biotechnol. 2016, 22, 16–25.
  • Nair, S. S. Experimental Investigation of Multipasstig Welding Using Response Surface Methodology. Int. J. Mech. Eng. Robot. Res. 2013, 2, 242–254.
  • Palvannan, T.; Kumar, P. S. Production of Laccase from Pleurotus florida NCIM 1243 Using Plackett–Burman Design and Response Surface Methodology. J. Basic Microbiol. 2010, 50, 325–335.
  • Jamwal, S.; Kumar, R.; Sharma, A.; Kanwar, S. S. Response Surface Methodology (RSM) Approach for Improved Extracellular RNase Production by a Bacillus sp. JAM 2017, 3, 131–144.
  • Meena, K. R.; Sharma, A.; Kumar, R.; Kanwar, S. S. Two Factor at a Time Approach by Response Surface Methodology to Aggrandize the Bacillus subtilis KLP2015 Surfactin Lipopeptide to Use as Antifungal Agent. JKSUS 2018. doi:10.1016/j.jkus.2018.05.025
  • Hole, R. C.; Singhal, R. S.; Melo, J. S.; D’Souza, S. F. A Rapid Plate Screening Technique for Extracellular Ribonuclease Producing Strains. BARC News Lett. 2004, 249, 10–13.
  • Aneja, K. R. Experiments in Microbiology, Plant Pathology and Biotechnology. New Age Int. Daryaganj New Delhi 2003, 4, 445–475.
  • Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 2007, 24, 1596–1599.
  • Isobe, K.; Uchiyama, S. An Assay for Ribonuclease Activity, Based on Ultraviolet Absorption of RNA Hydrolysate, Using Phosphotungstic Acid. J. Biochem. Biophys. Methods 1986, 1, 299–303.
  • Sana, B.; Ghosh, D.; Saha, M.; Mukherjee, J. Purification and Characterization of an Extracellular, Uracil Specific RNase from a Bizionia Species Isolated from the Marine Environment of the Sunderbans. Microvasc. Res. 2008, 163, 31–38.
  • Bradford, M. M. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Diwaniyan, S.; Sharma, K. K. Kuhad, Laccase from an Alkalitolerant Basidiomycetes Crinipellis sp. RCK-1: Production Optimization by Response Surface Methodology. J. Basic. Microbiol 2011, 51, 1–11.
  • Francis, F.; Sabu, A.; Nampoothiri, K. M.; Ramachandran, S.; Ghosh, S.; Szakacs, G.; Pandey, A. Use of Response Surface Methodology for Optimizing Process Parameters for the Production of α-Amylase by Aspergillus oryzae. Biochem. Eng. J. 2003, 15, 107–115.
  • Pace, C. N.; Grimsley, G. R.; Thomson, J. A.; Barnett, B. J. Conformational Stability and Activity of Ribonuclease T1 with Zero, One, and Two Intact Disulfide Bonds. J. Biol. Chem. 1988, 263, 11820–11825.
  • Makarov, A. A.; Kolchinsky, A.; Ilinskaya, O. N. Binase and Other Microbial RNases as Potential Anticancer Agents. Bioessays. 2008, 30, 781–790.
  • Kumar, P. A.; Manikandan, M.; Kannan, V. Optimization of Nutrients for the Production of RNase by Bacillus firmus VKPACU1 Using Response Surface Methodology. Biotechnol. Bioproc. E. 2010, 15, 641–650.
  • Anwar, M.; Deshmukh, S. S.; Killedar, N.; Narayan, L. Medium Optimization, Purification, Characterization and Specificity Studies of Extracellular RNase from Streptomyces sp. Int. J. Biol. Chem. 2015, 9, 133–141.
  • Akram, F.; Haq, I-u.; Hussain, Z.; Rashid, S. Purification and Characterization of an Extracellular T2 Family Ribonuclease (RNase) from Bacillus megaterium NRRL 3712. Protein. Pept. Lett. 2018, 25, 599–608.
  • Sharipova, M. R.; Balaban, N. P.; Gabdrakhmanova, L. A.; Shilova, M. A.; Kadyrova, J. M.; Udenskaya, G. N.; Leshchinskaya, I. B. Hydrolytic Enzymes and Sporulation in Bacillus intermedius. Microbiology 2002, 71, 494–499.
  • Gundampati, R. K.; Sharma, A.; Kumari, M.; Debnath, M. Extracellular Poly (A) Specific Ribonuclease from Aspergillus niger ATCC 26550: Purification, Biochemical, and Spectroscopic Studies. Process Biochem. 2011, 46, 135–141.
  • Tamura, M.; Moore, C. J.; Cohen, S. N. Nutrient Dependence of RNase E Essentiality in Escherichia coli. J. Bacteriol. 2013, 195, 1133–1141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.