310
Views
9
CrossRef citations to date
0
Altmetric
Articles

Enhancing laccase production by white-rot fungus trametes hirsuta SSM-3 in co-culture with yeast sporidiobolus pararoseus SSM-8

, &

References

  • Wang, H.; Peng, L.; Ding, Z.; Wu, J.; Shi, G. Stimulated Laccase Production of Pleurotus Ferulae JM301 Fungus by Rhodotorula mucilaginosa Yeast in co-Culture. Process. Biochem. 2015, 50, 901–905.
  • Thurston, C. F. The Structure and Function of Fungal Laccases. Microbiology 1994, 140, 19–26.
  • Piontek, K.; Antorini, M.; Choinowski, T. Crystal Structure of a Laccase from the Fungus Trametes Versicolor at 1.90-a Resolution Containing a Full Complement of Coppers. J. Biol. Chem. 2002, 277, 37663–37669.
  • Susana, R. C.; José, L. T. H. Industrial and Biotechnological Applications of Laccases: A Review. Biotechnol. Adv. 2006, 24, 500–513.
  • Zhang, H.; Hong, Y. Z.; Xiao, Y. Z.; Yuan, J.; Tu, X. M.; Zhang, X. Q. Efficient Production of Laccase by Trametes sp. AH28-2 in Cocultivation with a Trichoderma Strain. Appl. Microbiol. Biotechnol. 2006, 73, 89–94.
  • Saparrat, M. C. N.; Balatti, P.; Arambarri, A. M.; Martínez, M. J. Coriolopsis Rigida, a Potential Model of White-Rot Fungi That Produce Extracellular Laccases: A Review. J. Ind. Microbiol. Biotechnol. 2014, 41, 607–617.
  • Rodríguez, R. D.; Gabriela, H.; Siles, J. A.; Miguel, J.; Nazareno, S. M. C.; García-Romera, I. Enhancing Laccase Production by White-Rot Fungus Funalia Floccosa LPSC 232 in co-Culture with Penicillium Commune GHAIE86. Folia. Microbiol. 2019, 64, 91–99.
  • Ma, K.; Ruan, Z. Production of a Lignocellulolytic Enzyme System for Simultaneous Bio-Delignification and Saccharification of Corn Stover Employing co-Culture of Fungi. Bioresource. Technol. 2015, 175, 586–593.
  • Chan-Cupul, W.; Heredia Abarca, G.; Martínez Carrera, D.; Rodríguez Vázquez, R. Enhancement of Ligninolytic Enzyme Activities in a Trametes Maxima–Paecilomyces Carneus co-Culture: key Factors Revealed after Screening Using a Plackett–Burman Experimental Design. Electron. J. Biotechn. 2014, 17, 114–121.
  • Flores, C.; Vidal, C.; Trejo-Hernández, M. R.; Galindo, E.; Serrano-Carreón, L. Selection of Trichoderma Strains Capable of Increasing Laccase Production by Pleurotus ostreatus and Agaricus Bisporus in Dual Cultures. J. Appl. Microbiol. 2009, 106, 249–257.
  • Flores, C.; Casasanero, R.; Trejo-Hernández, M. R.; Galindo, E.; Serrano, C. L. Production of Laccase by Pleurotus ostreatus in Submerged Fermentation in co-Culture with Trichoderma Viride. J. Appl. Microbiol. 2010, 108, 810–817.
  • Mata, G.; Hernández, D. M. M.; Andreu, L. G. I. Changes in Lignocellulolytic Enzyme Activities in Six Pleurotus Spp. strains Cultivated on Coffee Pulp in Confrontation with Trichoderma Spp. World J. Microbiol. Biotechnol. 2005, 21, 143–150.
  • Dong, Y. C.; Wang, W.; Hu, Z. C.; Fu, M. L.; Chen, Q. H. The Synergistic Effect on Production of Lignin-Modifying Enzymes through Submerged co-Cultivation of Phlebia Radiata, Dichomitus Squalens and Ceriporiopsis Subvermispora Using Agricultural Residues. Bioprocess Biosyst. Eng. 2012, 35, 751–760.
  • Wang, H. L.; Li, P.; Yang, Y. H.; Liu, Y. F. Overproduction of Laccase from a Newly Isolated Ganoderma lucidum Using the Municipal Food Waste as Main Carbon and Nitrogen Supplement. Bioproc. Biosyst. Eng. 2015, 38, 957–966.
  • dos Santos, T. C.; de Brito, A. R.; Ferreira Bonomo, R. C.; Vieira Pires, A. J.; Oliveira, E. A.; Silva, T. P.; Franco, M. Statistical Optimization of Culture Conditions and Characterization for Ligninolytic Enzymes Produced from Rhizopus sp. Using Prickly Palm Cactus Husk. Chemi. Eng. Commun. 2017, 204, 55–63.
  • dos Santos, T. C.; dos Santos Reis, N.; Silva, T. P.; Paula Pereira Machado, Fd.; Ferereira Bonomo, R. C.; Franco, M. Prickly Palm Cactus Husk as a Raw Material for Production of Ligninolytic Enzymes by Aspergillus niger. Food Sci. Biotechnol. 2016, 25, 205–211.
  • Wang, H. L.; Yu, G. L.; Li, P.; Gu, Y. C.; Li, J.; Liu, G. S.; Yao, J. M. Overproduction of Trametes Versicolor Laccase by Making Glucose Starvation Using Yeast. Enzyme. Microb. Technol. 2009, 45, 146–149.
  • Li, P.; Wang, H. L.; Liu, G. S.; Li, X.; Yao, J. M. The Effect of Carbon Source Succession Onlaccase Activity in the co-Culture Process of Ganoderma lucidum and a Yeast. Enzyme. Microb. Technol. 2011, 48, 1–6.
  • Stoilova, I.; Krastanov, A. Overproduction of Laccase and Pectinase by Microbial Associations in Solid Substrate Fermentation. Appl. Biochem. Biotechnol. 2008, 149, 45–51.
  • Guo, C.; Zhao, L.; Wang, F.; Lu, J.; Ding, Z.; Shi, G. β-Carotene from Yeasts Enhances Laccase Production of Pleurotus Eryngii Var. ferulae in co-Culture. Front. Microbiol. 2017, 8, 1101.
  • Baldrian, P. Increase of Laccase Activity during Interspecific Interactions of White-Rot Fung. FEMS Microbiol. Ecol. 2004, 50, 245–253.
  • Rodríguez Couto, S.; Rodríguez, A.; Paterson, R. R. M.; Lima, N.; Teixeira, J. A. Laccase Activity from the Fungus Trametes Hirsuta Using an Air-Lift Bioreactor. Lett. Appl. Microbiol 2006, 42, 612–616.
  • Han, M.; He, Q.; Zhang, W. G. Carotenoids Production in Different Culture Conditions by Sporidiobolus Pararoseus. Prep. Biochem. Biotechnol. 2012, 42, 293–303.
  • White, T. J.; Bruns, T.; Lee, J.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., Eds.; Academic: San Diego, 1990, 315–322.
  • Chul, S. S.; Hyung, J.,K.; Moon, J. K.; Jae, Y. J. Morphological Change and Enhanced Pigment Production of Monascus When Cocultured with Saccharomyces cerevisiae or Aspergillus Oryzae. Biotechnol. Bioeng. 1998, 5, 576–581.
  • Laemmli, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685.
  • Mikiashvili, N.; Elisashvili, V.; Wasser, S.; Nevo, E. Nevol, E. Carbon and Nitrogen Sources Influence the Ligninolytic Enzyme Activity of Trametes Versicolor. Biotechnol. Lett. 2005, 27, 955–959.
  • Dhakar, K.; Pandey, A. Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes Hirsuta (MTCC 11397). Enzyme Res. 2005, 2013, 869062.
  • Singh, J.; Kumar, P.; Saharan, V.; Kapoor, R. K. Simultaneous Laccase Production and Transformation of bisphenol-A and Triclosan Using Trametes Versicolor. 3 Biotech. 2019, 9, 129.
  • Kocyigit, A.; Pazarbasi, M. B.; Yasa, I.; Ozdemir, G.; Karaboz, I. Production of Laccase from Trametes Trogii TEM H2: A Newly Isolated White-Rot Fungus by Air Sampling. J. Basic Microbiol. 2012, 52, 661–669.
  • Crowe, J. D.; Olsson, S. Induction of Laccase Activity in Rhizoctonia solani by Antagonistic Pseudomonas fluorescens Strains and a Range of Chemical Treatments. Appl. Environ. Microb. 2001, 67, 2088–2094.
  • Staszczak, M. The Role of the Ubiquitin–Proteasome System in the Response of the Ligninolytic Fungus Trametes Versicolor to Nitrogen Deprivation. Fungal. Genet. Biol. 2008, 45, 328–337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.