145
Views
2
CrossRef citations to date
0
Altmetric
Articles

Metabolic heat coherent growth of Halomonas variabilis (HV) for enhanced production of Extracellular Polymeric Substances (EPS) in a Bio Reaction Calorimeter (BioRC)

, , &

References

  • Ruiz-Ruiz, C.; Srivastava, G. K.; Carranza, D.; Mata, J. A.; Llamas, I.; Santamaría, M.; Quesada, E.; Molina, I. J. An Exopolysaccharide Produced by the Novel Halophilic Bacterium Halomonas stenophila Strain B100 Selectively Induces Apoptosis in Human T Leukaemia Cells. Appl. Microbiol. Biotechnol. 2011, 89, 345–355. DOI: 10.1007/s00253-010-2886-7.
  • Zhao, W.; Yang, S.; Huang, Q.; Cai, P. Bacterial Cell Surface Properties: Role of Loosely Bound Extracellular Polymeric Substances (LB-EPS). Colloid. Surface. B. 2015, 128, 600–607. DOI: 10.1016/j.colsurfb.2015.03.017.
  • Vu, B.; Chen, M.; Crawford, R.; Ivanova, E. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules 2009, 14, 2535–2554. DOI: 10.3390/molecules14072535.
  • Sutherland, I. W. Bacterial Exopolysaccharides. Adv. Microb. Physiol. 1972, 8, 143–213.
  • Sheng, G.-P.; Yu, H.-Q.; Li, X.-Y. Extracellular Polymeric Substances (EPS) of Microbial Aggregates in Biological Wastewater Treatment Systems: A Review. Biotechnol. Adv. 2010, 28, 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.
  • Bhaskar, P. V.; Bhosle, N. B. Bacterial Extracellular Polymeric Substance (EPS): a Carrier of Heavy Metals in the Marine Food-Chain. Environ. Int. 2006, 32, 191–198. DOI: 10.1016/j.envint.2005.08.010.
  • Pal, A.; Paul, A. K. Microbial Extracellular Polymeric Substances: Central Elements in Heavy Metal Bioremediation. Indian J. Microbiol. 2008, 48, 49–64. DOI: 10.1007/s12088-008-0006-5.
  • Hosoya, M.; Balzarini, J.; Shigeta, S.; De Clercq, E. Differential Inhibitory Effects of Sulfated Polysaccharides and Polymers on the Replication of Various Myxoviruses and Retroviruses, Depending on the Composition of the Target Amino Acid Sequences of the Viral Envelope Glycoproteins. Antimicrob Agents Ch. 1991, 35, 2515–2520. DOI: 10.1128/AAC.35.12.2515.
  • Donot, F.; Fontana, A.; Baccou, J. C.; Schorr-Galindo, S. Microbial Exopolysaccharides: Main Examples of Synthesis, Excretion, Genetics and Extraction. Carbohyd. Polym. 2012, 87, 951–962. DOI: 10.1016/j.carbpol.2011.08.083.
  • Haddadi, A.; Shavandi, M. Biodegradation of Phenol in Hypersaline Conditions by Halomonas sp. strain PH2-2 Isolated from Saline Soil. Int. Biodeter. Biodegr. 2013, 85, 29–34. DOI: 10.1016/j.ibiod.2013.06.005.
  • Nicolaus, B.; Kambourova, M.; Oner, E. T. Exopolysaccharides from Extremophiles: From Fundamentals to Biotechnology. Environ. Technol. 2010, 31, 1145–1158. DOI: 10.1080/09593330903552094.
  • Wang, J.; Salem, D. R.; Sani, R. K. Extremophilic Exopolysaccharides: A Review and New Perspectives on Engineering Strategies and Applications. Carbohyd Polym. 2019, 205, 8–26. DOI: 10.1016/j.carbpol.2018.10.011.
  • Papagianni, M.; Psomas, S. K.; Batsilas, L.; Paras, S. V.; Kyriakidis, D. A.; Liakopoulou-Kyriakides, M. Xanthan Production by Xanthomonas campestris in Batch Cultures. Process Biochem. 2001, 37, 73–80. DOI: 10.1016/S0032-9592(01)00174-1.
  • Nampoothiri, K. M.; Singhania, R. R.; Sabarinath, C.; Pandey, A. Fermentative Production of Gellan Using Sphingomonas paucimobilis. Process Biochem. 2003, 38, 1513–1519. DOI: 10.1016/S0032-9592(02)00321-7.
  • Arias, S.; del Moral, A.; Ferrer, M. R.; Tallon, R.; Quesada, E.; Béjar, V. Mauran, an Exopolysaccharide Produced by the Halophilic Bacterium Halomonas maura, with a Novel Composition and Interesting Properties for Biotechnology. Extremophiles 2003, 7, 319–326. DOI: 10.1007/s00792-003-0325-8.
  • Mata, J. A.; Béjar, V.; Llamas, I.; Arias, S.; Bressollier, P.; Tallon, R.; Urdaci, M. C.; Quesada, E. Exopolysaccharides Produced by the Recently Described Halophilic Bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol. 2006, 157, 827–835. DOI: 10.1016/j.resmic.2006.06.004.
  • Mata, J. A.; Bjar, V.; Bressollier, P.; Tallon, R.; Urdaci, M. C.; Quesada, E.; Llamas, I. Llamas, I. Characterization of Exopolysaccharides Produced by Three Moderately Halophilic Bacteria Belonging to the Family Alteromonadaceae. J. Appl. Microbiol. 2008, 105, 521–528. DOI: 10.1111/j.1365-2672.2008.03789.x.
  • Llamas, I.; Mata, J. A.; Tallon, R.; Bressollier, P.; Urdaci, M. C.; Quesada, E.; Béjar, V. Characterization of the Exopolysaccharide Produced by Salipiger mucosus A3T, a Halophilic Species Belonging to the Alphaproteobacteria, Isolated on the Spanish Mediterranean Seaboard. Mar. Drugs 2010, 8, 2240–2251. DOI: 10.3390/md8082240.
  • Balamurugan, B.; Thirumarimurugan, M.; Kannadasan, T. Anaerobic Degradation of Textile Dye Bath Effluent Using Halomonas sp. Bioresource Technol. 2011, 102, 6365–6369. DOI: 10.1016/j.biortech.2011.03.017.
  • Salama, Y.; Chennaoui, M.; Sylla, A.; Mountadar, M.; Rihani, M.; Assobhei, O. Characterization, Structure, and Function of Extracellular Polymeric Substances (EPS) of Microbial Biofilm in Biological Wastewater Treatment Systems: A Review. Desalin. Water Treat. 2016, 57, 16220–16237. DOI: 10.1080/19443994.2015.1077739.
  • Whitfield, C. Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli. Annu. Rev. Biochem. 2006, 75, 39–68. DOI: 10.1146/annurev.biochem.75.103004.142545.
  • DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Miller, G. L. Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Van Wychen, S.; Laurens, L. M. L. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP), United States. Department of Energy. Bioenergy Technologies Office: Washington, 2016.
  • Martinez-Checa, F.; Toledo, F. L.; El Mabrouki, K.; Quesada, E.; Calvo, C. Characteristics of Bioemulsifier V2-7 Synthesized in Culture Media Added of Hydrocarbons: Chemical Composition, Emulsifying Activity and Rheological Properties. Bioresource Technol. 2007, 98, 3130–3135. DOI: 10.1016/j.biortech.2006.10.026.
  • Sam, S.; Kucukasik, F.; Yenigun, O.; Nicolaus, B.; Oner, E. T.; Yukselen, M. A. Flocculating Performances of Exopolysaccharides Produced by a Halophilic Bacterial Strain Cultivated on Agro-Industrial Waste. Bioresource Technol. 2011, 102, 1788–1794. DOI: 10.1016/j.biortech.2010.09.020.
  • Liang, Z.; Li, W.; Yang, S.; Du, P. Extraction and Structural Characteristics of Extracellular Polymeric Substances (EPS), Pellets in Autotrophic Nitrifying Biofilm and Activated Sludge. Chemosphere 2010, 81, 626–632. DOI: 10.1016/j.chemosphere.2010.03.043.
  • Mishra, A.; Kavita, K.; Jha, B. Characterization of Extracellular Polymeric Substances Produced by Micro-Algae Dunaliella Salina. Carbohyd. Polym. 2011, 83, 852–857. DOI: 10.1016/j.carbpol.2010.08.067.
  • More, T. T.; Yadav, J. S. S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Extracellular Polymeric Substances of Bacteria and Their Potential Environmental Applications. J. Environ. Manage. 2014, 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.
  • Rajendran, K.; Sekar, S.; Mahadevan, S.; Kumar Shanmugam, B.; Jeyaprakash, R.; Paramasamy, G.; Mandal, A. B. Biological Real-Time Reaction Calorimeter Studies for the Production of Penicillin G Acylase from Bacillus badius. Appl. Biochem. Biotechnol. 2014, 172, 3736–3747. DOI: 10.1007/s12010-014-0800-y.
  • Dhandapani, B.; Mahadevan, S.; Muthiah, S. Conversion of Agro by-Products to an Alkaline Protease by Aspergillus Tamarii and the Usefulness of Its Metabolic Heat for Better Process Understanding. Waste Biomass. Valori. 2019, 1–7. DOI: 10.1007/s12649-019-00608-x
  • Dhandapani, B.; Mahadevan, S.; Mandal, A. B. Energetics of Growth of Aspergillus Tamarii in a Biological Real-Time Reaction Calorimeter. Appl. Microbiol. Biotechnol. 2012, 93, 1927–1936. DOI: 10.1007/s00253-011-3722-4.
  • Mahadevan, S.; Dhandapani, B.; Sivaprakasam, S.; Mandal, A. B. Batch Kinetic Studies on Growth of Salt Tolerant Pseudomonas aeruginosa Secreting Protease in a Biocalorimeter. Biotechnol. Bioproc. E. 2010, 15, 670–675. DOI: 10.1007/s12257-009-3131-z.
  • Sekar, S.; Sivaprakasam, S.; Mahadevan, S. Investigations on Ultraviolet Light and Nitrous Acid Induced Mutations of Halotolerant Bacterial Strains for the Treatment of Tannery Soak Liquor. Int Biodeterior Biodegr. 2009, 63, 176–181. DOI: 10.1016/j.ibiod.2008.08.005.
  • Stockar, V.; Marison, U.; W, I. The use of calorimetry in biotechnology. In Bioprocesses and Engineering; Springer Berlin Heidelberg: Berlin, Heidelberg, 1989; Vol. 40, pp 93–136. DOI: 10.1007/BFb0009829
  • Nouha, K.; Kumar, R. S.; Balasubramanian, S.; Tyagi, R. D. Critical Review of EPS Production, Synthesis and Composition for Sludge Flocculation. J. Environ. Sci. 2018, 66, 225–245. DOI: 10.1016/j.jes.2017.05.020.
  • Yang, G.; Lin, J.; Zeng, E. Y.; Zhuang, L. Extraction and Characterization of Stratified Extracellular Polymeric Substances in Geobacter Biofilms. Bioresource Technol. 2019, 276, 119–126. DOI: 10.1016/j.biortech.2018.12.100.
  • Desai, M.; Patel, K. Isolation, Optimization, and Purification of Extracellular Levansucrase from Nonpathogenic Klebsiella Strain L1 Isolated from Waste Sugarcane Bagasse. Biocatal. Agric. Biotechnol. 2019, 19, 101107. DOI: 10.1016/j.bcab.2019.101107.
  • Suberu, Y.; Akande, I.; Samuel, T.; Lawal, A.; Olaniran, A. Optimization of Protease Production in Indigenous Bacillus Species Isolated from Soil Samples in Lagos, Nigeria Using Response Surface Methodology. Biocatal. Agric. Biotechnol. 2019, 18, 101011. DOI: 10.1016/j.bcab.2019.01.049.
  • Rusanowska, P.; Cydzik-Kwiatkowska, A.; Świątczak, P.; Wojnowska-Baryła, I. Wojnowska-Baryła, I. Changes in Extracellular Polymeric Substances (EPS) Content and Composition in Aerobic Granule Size-Fractions during Reactor Cycles at Different Organic Loads. Bioresource Technol. 2019, 272, 188–193. DOI: 10.1016/j.biortech.2018.10.022.
  • Yu, G.-H.; He, P.-J.; Shao, L.-M. Characteristics of Extracellular Polymeric Substances (EPS) Fractions from Excess Sludges and Their Effects on Bioflocculability. Bioresource Technol. 2009, 100, 3193–3198. DOI: 10.1016/j.biortech.2009.02.009.
  • Li, W. W.; Zhou, W. Z.; Zhang, Y. Z.; Wang, J.; Zhu, X. B. Flocculation Behavior and Mechanism of an Exopolysaccharide from the Deep-Sea Psychrophilic Bacterium Pseudoalteromonas sp. SM9913. Bioresource Technol. 2008, 99, 6893–6899. DOI: 10.1016/j.biortech.2008.01.050.
  • Nasir, D. Q.; Wahyuningrum, D.; Hertadi, R. Screening and Characterization of Levan Secreted by Halophilic Bacterium of Halomonas and Chromohalobacter Genuses Originated from Bledug Kuwu Mud Crater. Procedia Chem. 2015, 16, 272–278. DOI: 10.1016/j.proche.2015.12.050.
  • Sun, M.-L.; Zhao, F.; Shi, M.; Zhang, X.-Y.; Zhou, B.-C.; Zhang, Y.-Z.; Chen, X.-L. Characterization and Biotechnological Potential Analysis of a New Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Sci. Rep. 2016, 5, 18435. DOI: 10.1038/srep18435.
  • Pal, A.; Biswas, A.; Chatterjee, S.; Paul, A. K. Optimization of Cultural Conditions for Production of Exopolysaccaride by Halomonas marina HMA 103 under Batch-Culture. Am. J. Microbiol. 2015, 6, 31–39. DOI: 10.3844/ajmsp.2015.31.39.
  • Poli, A.; Kazak, H.; Gürleyendağ, B.; Tommonaro, G.; Pieretti, G.; Öner, E. T.; Nicolaus, B. High Level Synthesis of Levan by a Novel Halomonas Species Growing on Defined Media. Carbohyd. Polym. 2009, 78, 651–657. DOI: 10.1016/j.carbpol.2009.05.031.
  • Biswas, J.; Ganguly, J.; Paul, A. K. Partial Characterization of an Extracellular Polysaccharide Produced by the Moderately Halophilic Bacterium Halomonas xianhensis SUR308. Biofouling 2015, 31, 735–744. DOI: 10.1080/08927014.2015.1106479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.