363
Views
15
CrossRef citations to date
0
Altmetric
Articles

Mixture design as a potential tool in modeling the effect of light wavelength on Dunaliella salina cultivation: an alternative solution to increase microalgae lipid productivity for biodiesel production

ORCID Icon, , &

References

  • Kamyab, H.; Md Din, M. F.; Ponraj, M.; Keyvanfar, A.; Rezania, S.; Taib, S. M.; Abd Majid, M. Z. Isolation and Screening of Microalgae from Agro-Industrial Wastewater (POME) for Biomass and Biodiesel Sources. Desalin. Water Treat. 2016, 57, 29118–29125.
  • Ge, Y.; Ning, Z.; Wang, Y.; Zheng, Y.; Zhang, C.; Figeys, D. Quantitative Proteomic Analysis of Dunaliella Salina upon Acute Arsenate Exposure. Chemosphere. 2016, 145, 112–118.
  • Kamyab, H.; Chelliapan, S.; Lee, C. T.; Khademi, T.; Kumar, A.; Yadav, K. K.; Rezania, S.; Kumar, S.; Ebrahimi, S. S. Improved Production of Lipid Contents by Cultivating Chlorella Pyrenoidosa in Heterogeneous Organic Substrates. Clean Technol. Environ. Policy. 2019, 21, 1969–1978.
  • Bellou, S.; Baeshen, M. N.; Elazzazy, A. M.; Aggeli, D.; Sayegh, F.; Aggelis, G. Microalgal Lipids Biochemistry and Biotechnological Perspectives. Biotechnol. Adv. 2014, 32, 1476–1493.
  • Martins, D. A.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K. M. Alternative Sources of N-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae. Mar. Drugs. 2013, 11, 2259–2281.
  • Ryckebosch, E.; Bruneel, C.; Termote-Verhalle, R.; Goiris, K.; Muylaert, K.; Foubert, I. Nutritional Evaluation of Microalgae Oils Rich in Omega-3 Long Chain Polyunsaturated Fatty Acids as an Alternative for Fish Oil. Food Chem. 2014, 160, 393–400.
  • Tomaselli, L. The Microalgal Cell. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Richmond, A. Ed.; Blackwell Publishing Ltd: Iowa, 2004.; Chapter 1.
  • Niizawa, I.; Espinaco, B. Y.; Leonardi, J. R.; Heinrich, J. M.; Sihufe, G. A. Enhancement of Astaxanthin Production from Haematococcus Pluvialis under Autotrophic Growth Conditions by a Sequential Stress Strategy. Prep. Biochem. Biotechnol. 2018, 48, 528–534.
  • Zheng, Z.; Gao, S.; He, Y.; Li, Z.; Li, Y.; Cai, X.; Gu, W.; Wang, G. The Enhancement of the Oxidative Pentose Phosphate Pathway Maybe Involved in Resolving Imbalance between Photosystem I and II in Dunaliella salina. Algal Res. 2017, 26, 402–408.
  • Khadim, S. R.; Singh, P.; Singh, A. K.; Tiwari, A.; Mohanta, A.; Asthana, R. K. Mass Cultivation of Dunaliella Salina in a Flat Plate Photobioreactor and Its Effective Harvesting. Bioresour. Technol. 2018, 270, 20–29.
  • Milano, J.; Ong, H. C.; Masjuki, H. H.; Chong, W. T.; Lam, M. K.; Loh, P. K.; Vellayan, V. Microalgae Biofuels as an Alternative to Fossil Fuel for Power Generation. Renew. Sustain. Energy Rev. 2016, 58, 180–197.
  • Singh, D.; Sharma, D.; Soni, S. L.; Sharma, S.; Kumari, D. Chemical Compositions, Properties, and Standards for Different Generation Biodiesels: A Review. Fuel. 2019, 253, 60–71.
  • Ramos, M. J.; Fernández, C. M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresour. Technol. J. 2009, 100, 261–268.
  • Rasdi, N. W.; Qin, J. G. Effect of N:P Ratio on Growth and Chemical Composition of Nannochloropsis Oculata and Tisochrysis Lutea. J. Appl. Phycol. 2015, 27, 2221–2230.
  • Li, C.; Yu, Y.; Zhang, D.; Liu, J.; Ren, N.; Feng, Y. Combined Effects of Carbon, Phosphorus and Nitrogen on Lipid Accumulation of Chlorella Vulgaris in Mixotrophic Culture. J. Chem. Technol. Biotechnol. 2016, 91, 680–684.
  • Singh, N. K.; Naira, V. R.; Maiti, S. K. Production of Biodiesel by Autotrophic Chlorella Pyrenoidosa in a Sintered Disc Lab Scale Bubble Column Photobioreactor under Natural Sunlight. Prep. Biochem. Biotechnol. 2019, 49, 255–269.
  • Abedini Najafabadi, H.; Malekzadeh, M.; Jalilian, F.; Vossoughi, M.; Pazuki, G. Effect of Various Carbon Sources on Biomass and Lipid Production of Chlorella Vulgaris during Nutrient Sufficient and Nitrogen Starvation Conditions. Bioresour. Technol. 2015, 180, 311–317.
  • Hess, S. K.; Lepetit, B.; Kroth, P. G.; Mecking, S. Production of Chemicals from Microalgae Lipids – Status and Perspectives. Eur. J. Lipid Sci. Technol. 2017, 120, 1–26.
  • Ale, M. T.; Pinelo, M.; Meyer, A. S. Assessing Effects and Interactions among Key Variables Affecting the Growth of Mixotrophic Microalgae: PH, Inoculum Volume, and Growth Medium Composition. Prep. Biochem. Biotechnol. 2014, 44, 242–256.
  • Kamyab, H.; Din, M. F. M.; Ghoshal, S. K.; Lee, C. T.; Keyvanfar, A.; Bavafa, A. A.; Rezania, S.; Lim, J. S. Chlorella Pyrenoidosa Mediated Lipid Production Using Malaysian Agricultural Wastewater: Effects of Photon and Carbon. Waste Biomass Valor. 2016, 7, 779–788.
  • Kamyab, H.; Md Din, M. F.; Lee, C. T.; Keyvanfar, A.; Shafaghat, A.; Majid, M. Z. A.; Ponraj, M.; Yun, T. X. Lipid Production by Microalgae Chlorella Pyrenoidosa Cultivated in Palm Oil Mill Effluent (POME) Using Hybrid Photo Bioreactor (HPBR). Desalin. Water Treat. 2015, 55, 3737–3749.
  • Zenooz, A. M.; Ashtiani, F. Z.; Ranjbar, R.; Javadi, N. Synechococcus sp. (PTCC 6021) Cultivation under Different Light Irradiances—Modeling of Growth Rate-Light Response. Prep. Biochem. Biotechnol. 2015, 46, 567–574.
  • Abiusi, F.; Sampietro, G.; Marturano, G.; Biondi, N.; Rodolfi, L.; D’Ottavio, M.; Tredici, M. R. Growth, Photosynthetic Efficiency, and Biochemical Composition of Tetraselmis suecica F&M-M33 Grown with LEDs of Different Colors. Biotechnol. Bioeng. 2014, 111, 956–964.
  • Petroutsos, D.; Tokutsu, R.; Maruyama, S.; Flori, S.; Greiner, A.; Magneschi, L.; Cusant, L.; Kottke, T.; Mittag, M.; Hegemann, P.; et al. A Blue-Light Photoreceptor Mediates the Feedback Regulation of Photosynthesis. Nature. 2016, 537, 563–566.
  • Hultberg, M.; Jönsson, H. L.; Bergstrand, K. J.; Carlsson, A. S. Impact of Light Quality on Biomass Production and Fatty Acid Content in the Microalga Chlorella vulgaris. Bioresour. Technol. 2014, 159, 465–467.
  • Zhong, Y.; Jin, P.; Cheng, J. J. A Comprehensive Comparable Study of the Physiological Properties of Four Microalgal Species under Different Light Wavelength Conditions. Planta. 2018, 248, 489–498.
  • Okumura, C.; Saffreena, N.; Rahman, M. A.; Hasegawa, H.; Miki, O.; Takimoto, A. Economic Efficiency of Different Light Wavelengths and Intensities Using LEDs for the Cultivation of Green Microalga Botryococcus Braunii (NIES-836) for Biofuel Production. Environ. Prog. Sustainable Energy. 2015, 34, 269–275.
  • Montgomery, D. C. Design and Analysis of Experiments. 8th ed.; John Wiley & Sons, Inc, New York, 2013.
  • Marcheafave, G. G.; Tormena, C. D.; Pauli, E. D.; Rakocevic, M.; Bruns, R. E.; Scarminio, I. S. Experimental Mixture Design Solvent Effects on Pigment Extraction and Antioxidant Activity from Coffea arabica L. Leaves. Microchem. J. 2019, 146, 713–721.
  • Viegas, I. M. A.; Barradas Filho, A. O.; Marques, E. P.; Pereira, C. F.; Marques, A. L. B. Oxidative Stability of Biodiesel by Mixture Design and a Four-Component Diagram. Fuel. 2018, 219, 389–398.
  • Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y. Mixture Design of Concrete Using Simplex Centroid Design Method. Cem. Concr. Compos. 2018, 89, 76–88.
  • Lazić, ŽR. Mixture Design "Composition-Property". In Design of Experiments in Chemical Engineering: A Practical Guide. Wiley-VCH, Weinhem, 2005; Chapter 3.
  • Guillard, R. R. L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Smith, W. L., Chanley, M. H., Eds.; Springer: New York, 1975; Chapter 3.
  • Bredda, E. H.; Molgero Da Rós, P. C.; Pedro, G. A.; de Castro, H. F.; Silva, M. B. Nannochloropsis Gaditana and Dunaliella Salina as Feedstock for Biodiesel Production: Lipid Production and Biofuel Quality. JABB. 2018, 20, 1–10.
  • Mercer, P.; Armenta, R. E. Developments in Oil Extraction from Microalgae. Eur. J. Lipid Sci. Technol. 2011, 113, 539–547.
  • Xue, Z.; Wan, F.; Yu, W.; Liu, J.; Zhang, Z.; Kou, X. Edible Oil Production from Microalgae: A Review. Eur. J. Lipid Sci. Technol. 2018, 120, 1700428–1700411.
  • AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; 5th Ed.; AOCS Press, Champaign, 2004.
  • Helena, S.; Zainuri, M.; Suprijanto, J. Microalgae Dunaliella Salina (Teodoresco, 1905) Growth Using the LED Light (Light Limiting Dioda) and Different Media. Aquat. Procedia. 2016, 7, 226–230.
  • Ajayan, K. V.; Anjula, K.; Syamasurya, A. P.; Harilal, C. C. Energy Efficient Technology for Enhanced Growth and Lipid Production in Chlamydomonas Reinhardtii through Additional Reflector Coated LED Photo-Bioreactor. Biochem. Eng. J. 2019, 144, 81–88.
  • Woong, C.; Sung, M.; Nam, K.; Moon, M.; Kwon, J.; Yang, J. Effect of Monochromatic Illumination on Lipid Accumulation of Nannochloropsis Gaditana under Continuous Cultivation. Bioresour. Technol. 2014, 159, 30–35.
  • Ra, C. H.; Sirisuk, P.; Jung, J. H.; Jeong, G. T.; Kim, S. K. Effects of Light-Emitting Diode (LED) with a Mixture of Wavelengths on the Growth and Lipid Content of Microalgae. Bioprocess Biosyst. Eng. 2018, 41, 457–465.
  • Liu, J. Interspecific Biodiversity Enhances Biomass and Lipid Productivity of Microalgae as Biofuel Feedstock. J. Appl. Phycol. 2016, 28, 25–33.
  • Chen, Y.; Tang, X.; Kapoore, R. V.; Xu, C.; Vaidyanathan, S. Influence of Nutrient Status on the Accumulation of Biomass and Lipid in Nannochloropsis Salina and Dunaliella Salina. Energy Convers. Manag. 2015, 106, 61–72.
  • Cho, K.; Lee, C.; Ko, K.; Lee, Y.; Kim, K.; Kim, M.; Chung, Y.; Kim, D.; Yeo, I.; Oda, T. Use of Phenol-Induced Oxidative Stress Acclimation to Stimulate Cell Growth and Biodiesel Production by the Oceanic Microalga Dunaliella Salina. Algal Res. 2016, 17, 61–66.
  • El Arroussi, H.; Benhima, R.; El Mernissi, N.; Bouhfid, R.; Tilsaghani, C.; Bennis, I.; Wahby, I.; Bennis, I.; Wahby, I. Screening of Marine Microalgae Strains from Moroccan Coasts for Biodiesel Production. Renew. Energy. 2017, 113, 1515–1522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.