280
Views
16
CrossRef citations to date
0
Altmetric
Articles

Biosynthesis, characterization, bactericidal and sporicidal activity of silver nanoparticles using the leaves extract of Litchi chinensis

, , , , ORCID Icon, & show all

References

  • Tehri, N.; Kumar, N.; Raghu, H. V.; Vashishth, A. Biomarkers of Bacterial Spore Germination. Ann. Microbiol. 2018, 68, 513–523.
  • Soni, A.; Oey, I.; Silcock, P.; Bremer, P. Bacillus Spores in the Food Industry: A Review on Resistance and Response to Novel Inactivation Technologies. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1139–1148.
  • Cousin, M. A. Spore Forming Bacteria in Foods. West Lafayette, IN: Purdue University, 1989; pp. 1–3.
  • Omidbakhsh, N. Evaluation of Sporicidal Activities of Selected Environmental Surface Disinfectants: carrier Tests with the Spores of Clostridium difficile and Its Surrogates. Am. J. Infect. Control. 2010, 38, 718–722.
  • Russell, A. D. Bacterial Spores and Chemical Sporicidal Agents. Clin. Microbiol. Rev. 1990, 3, 99–119.
  • Twum-Danso, K.; Newman, M. J.; Obeng-Nkrumah, N.; Krogfelt, K. A. High Levels of Extended-Spectrum Betalactamases in a Major Teaching Hospital in Ghana: The Need for Regular Monitoring and Evaluation of Antibiotic Resistance. Am. J. Trop. Med. Hyg. 2013, 89, 960–964.
  • Maheshwari, M.; Ahmad, I.; Althubiani, A. S. Multidrug Resistance and Transferability of Bla CTX-M among Extended Spectrum β-Lactamase-Producing Enteric Bacteria in Biofilm. J. Glob. Antimicrob. Resist. 2016, 6, 142–149.
  • Bogdanović, U.; Lazić, V.; Vodnik, V.; Budimir, M.; Marković, Z.; Dimitrijević, S. Copper Nanoparticles with High Antimicrobial Activity. Mater. Lett. 2014, 128, 75–78.
  • Escárcega-González, C. E.; Garza-Cervantes, J. A.; Vázquez-Rodríguez, A.; Montelongo-Peralta, L. Z.; Treviño-González, M. T.; Díaz Barriga Castro, E.; Saucedo-Salazar, E.M.; Chávez Morales, R.M.; Regalado Soto, D.I.; Treviño González, F.M.; Carrazco Rosales, J.L.; Cruz, R.V.; Morones-Ramírez, J.R. In Vivo Antimicrobial Activity of Silver Nanoparticles Produced via a Green Chemistry Synthesis Using Acacia Rigidula as a Reducing and Capping Agent. Int. J. Nanomed. 2018, 13, 2349–2363.
  • Katasa, H.; Lima, C. S.; Azlana, A. Y. H. N.; Buanga, F.; Busra, M. F. M. Bactericidal Activity of Biosynthesized Gold Nanoparticles Using Biomolecules from Lignosus Rhinocerotis and Chitosan. Saudi Pharm. J. 2019, 27, 283–292.
  • Tanwar, J.; Sharma, M.; Parmar, A.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Antibacterial Potential of Silver Nanoparticles against Multidrug Resistant Bacterial Isolates from Blood Cultures. Inorg Nano-Metal Chem. 2020, 50, 1–7.
  • Gopinath, P. M.; Dhanasekaran, D.; Ranjani, A.; Thajuddin, N.; Akbarsha, M. A.; Velmurugan, M.; Panneerselvam, A. Optimization of Sporicidal Activity and Environmental Bacillus Endospores Decontamination by Biogenic Silver Nanoparticle. Future Microbiol. 2015, 10, 725–741.
  • Abbassy, M. A.; Abdel-Rasoul, M. A.; Nassar, A. M. K.; Soliman, B. S. M. Nematicidal Activity of Silver Nanoparticles of Botanical Products against Root-Knot Nematode, Meloidogyne incognita. Arch. Phytopath. Plant Protect. 2017, 50, 909–926.
  • Mori, Y.; Ono, T.; Miyahira, Y.; et al. Antiviral Activity of Silver Nanoparticle/Chitosan Composites against H1N1 Influenza a Virus. Nanoscale Res. Lett. 2013, 8, 93.
  • Aziz, N.; Sherwani, A.; Faraz, M.; Fatma, T.; Prasad, R. Illuminating the Anticancerous Efficacy of a New Fungal Chassis for Silver Nanoparticle Synthesis. Front. Chem. 2019, 7, 65.
  • Jaiswal, L.; Shankar, S.; Rhim, J. H. Applications of Nanotechnology in Food Microbiology. Methods Microbiol. 2019, 46, 43–60.
  • Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M. M. Nanosilver Particles in Medical Applications: synthesis, Performance, and Toxicity. Int. J. Nanomedicine. 2014, 9, 2399–2407.
  • Gupta, N.; Upadhyaya, C. P.; Singh, A.; Abd-Elsalam, K. A.; Prasad, R. Applications of Silver Nanoparticles in Plant Protection. In Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences, Abd-Elsalam, K. A.; Prasad, R. (Eds.). Springer International Publishing AG, Cham, Switzerland, 2018; pp. 47–265.
  • Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulkarni, S. K.; et al. Extracellular Synthesis of Silver Nanoparticles by a Silver-Tolerant Yeas Strain MKY3. Nanotechnology. 2003, 14, 95.
  • Salam, H. A.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S.; Sivaraj, R. Plants: Green Route for Nanoparticle Synthesis. Int. Res. J. Biol. Sci. 2012, 1, 85–90.
  • Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of Silver Nanoparticles on Rice (Oryza sativa L. cv. KDML 105) Seed Germination and Seedling Growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309.
  • Saha, J.; Begum, A.; Mukherjee, A.; Kumar, S. A Novel Green Synthesis of Silver Nanoparticles and Their Catalytic Action in Reduction of Methylene Blue Dye. Sustain Environ. Res. 2017, 27, 245–250.
  • Natarajan, K.; Selvaraj, S.; Murty, V. R. Microbial Production of Silver Nanoparticles. Dig. J. Nanomater. Biostruct. 2010, 5, 135–140.
  • Abd-Elnaby, H. M.; Abo-Elala, G. M.; Abdel-Raouf, U. M.; Hamed, M. M. Bactericidal and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles from Marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 2016, 42, 301–312.
  • Abdel-Raouf, N.; Al-Enazi, N. M.; Ibraheem, I. B. M.; Alharbi, R. M.; Alkhulaifi, M. M. Biosynthesis of Silver Nanoparticles by Using of the Marine Brown Alga Padina Pavonia and Their Characterization. Saudi J. Biol. Sci. 2019, 26, 1207–1215.
  • Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. Int. J. Mol. Sci. 2012, 13, 466–476.
  • Kanmani, P.; Lim, S. T. Synthesis and Characterization of Pullulan-Mediated Silver Nanoparticles and Its Antimicrobial Activities. Carbohydr. Polym. 2013, 97, 421–428.
  • Mohanty, S.; Mishra, S.; Jena, P.; Jacob, B.; Sarkar, B.; Sonawane, A. An Investigation on the Bactericidal, Cytotoxic, and Antibiofilm Efficacy of Starch-Stabilized Silver Nanoparticles. Nanomed. Nanotechnol. 2012, 8, 916–924.
  • Priyadarshini, S.; Sulava, S.; Bhol, R.; Jena, S. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica and Ocimum Sanctum Leaf Extract. Curr. Sci. 2019, 117, 1300–1307.
  • Prabhu, S.; Poulose, E. K. Silver Nanoparticles: mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2012, 2, 32.
  • Ahmed, S.; Saifullah, Ahmad, M.; Swami, B. L.; Ikram, S. Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract. J. Rad. Res. Appl. Sci. 2015, 9, 1–7.
  • Taak, P.; Koul, B. Phytochemistry and Pharmacological Properties of Lychee (Litchi Chinensis Sonn). J. Chem. Pharm. Res. 2016, 8, 35–48.
  • Emanuele, S.; Lauricella, M.; Calvaruso, G.; D’Anneo, A.; Giuliano, M. Litchi Chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients. 2017, 9, 992.
  • Srivastava, V.; Viswakarma, B.; Deep, P.; Awasthi, H.; Verma, S.; Vishnoi, R.; Verma, S. K. A Phytopharmacological Review of Litchi Chinensis. Int. J. Pharm. Sci. Rev. Res. 2018, 51, 58–65.
  • Vankar, P. S.; Shukla, D. Biosynthesis of Silver Nanoparticles Using Lemon Leaves Extract and Its Application for Antimicrobial Finish on Fabric. Appl. Nanosci. 2012, 2, 163–168.
  • Ramesh, P. S.; Kokila, T.; Geetha, D. Plant Mediated Green Synthesis and Bactericidal Activity of Silver Nanoparticles Using Emblica Officinalis Fruit Extract. Spectrochim. Acta A. 2015, 142, 339–343.
  • Manikandan, R.; Beulaja, M.; Thiagarajan, R.; Palanisamy, S.; Goutham, G.; Koodalingam, A.; et al. Biosynthesis of Silver Nanoparticles Using Aqueous Extract of Phyllanthus Acidus L. fruits and Characterization of Its anti-Inflammatory Effect against H2O2 Exposed Rat Peritoneal Macrophages. Proc. Biochem. 2017, 55, 172–181.
  • Tehri, N.; Kumar, N.; Raghu, H. V.; et al. Role of Stereospecific Nature of Germinants in Bacillus megaterium Spores Germination. 3 Biotech. 2017, 7, 259.
  • Downes, F.P.; Ito K (Eds). Compendium of Methods for the Microbiological Examination of Foods. 4th ed.; American Public Health Association, Washington, DC, USA, 2001.
  • Ibrahim, H. M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275.
  • Krishnaraj, C.; Jagan, E.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.; Mohan, N. Synthesis of Silver Nanoparticles Using Acalypha Indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids Surf. B. 2010, 76, 50–56.
  • Zaheer, Z. Rafiuddin  . Silver Nanoparticles to Self-Assembled Films: green Synthesis and Characterization. Colloids Surf. B Biointerfaces. 2012, 90, 48–52.
  • Bahuguna, G.; Kumar, A.; Mishra, N. K.; Kumar, C.; Bahlwal, A.; Chaudhary, P.; Singh, R. Green Synthesis and Characterization of Silver Nanoparticles Using Aqueous Petal Extract of the Medicinal Plant Combretum Indicum. Mat. Res. Express. 2016, 3, 075003.
  • Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Salvia Spinosa Grown in Vitro and Their Bactericidal Activity Assessment. J. Nanostructure Chem. 2019, 9, 1–9.
  • Raut, R. W.; Lakkakula, J. R.; Kolekar, N. S.; Mendhulkar, V. D.; Kashid, S. B. Phytosynthesis of Silver Nanoparticle Using Gliricidia Sepium (Jacq.). Curr. Nanosci. 2009, 5, 117–122.
  • Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf Extract Mediated Green Synthesis of Silver Nanoparticles from Widely Available Indian Plants: Synthesis, Characterization, Antimicrobial Property and Toxicity Analysis. Bioresour. Bioprocess. 2014, 1, 1–10.
  • Sre, P. R.; Reka, M.; Poovazhagi, R.; Kumar, M. A.; Murugesan, K. Antibacterial and Cytotoxic Effect of Biologically Synthesized Silver Nanoparticles Using Aqueous Root Extract of Erythrina Indica Lam. Spectrochim. Acta A. 2015, 135, 1137–1144.
  • Pirtarighata, S.; Ghannadniab, M.; Baghshahi, S. Biosynthesis of Silver Nanoparticles Using Ocimum Basilicum Cultured under Controlled Conditions for Bactericidal Application. Mater. Sci. Eng. C. 2019, 98, 250–255.
  • Hamouda, R. A.; Hussein, M. H.; Abo-Elmagd, R. A.; Bawazir, S. S. Synthesis and Biological Characterization of Silver Nanoparticles Derived from the Cyanobacterium Oscillatoria Limnetica. Sci. Rep. 2019, 9, 13071.
  • Qais, F. A.; Shafiq, A.; Khan, H. M.; Husain, F. M.; Khan, R. A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Bactericidal Effect of Silver Nanoparticles Synthesized Using Murraya Koenigii (L.) against Multidrug-Resistant Pathogens. Bioinorg. Chem. Appl. 2019, 2019, 1–11.
  • Rautela, A.; Rani, J.; Debnath, M. Green Synthesis of Silver Nanoparticles from Tectona Grandis Seeds Extract: Characterization and Mechanism of Antimicrobial Action on Different Microorganisms. J. Anal. Sci. Technol. 2019, 10, 5.
  • Oves, M.; Aslam, M.; Rauf, M. A.; Qayyum, S.; Qari, H. A.; Khan, M. S.; Alam, M. Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I. M. Antimicrobial and Anticancer Activities of Silver Nanoparticles Synthesized from the Root Hair Extract of Phoenix Dactylifera. Mater. Sci. Eng. C. 2018, 89, 429–443.
  • Cicek, S.; Gungor, A. A.; Adiguzel, A.; Nadaroglu, H. Biochemical Evaluation and Green Synthesis of Nano Silver Using Peroxidase from Euphorbia (Euphorbia Amygdaloides) and Its Antibacterial Activity. J. Chem. 2015, 7, 486948.
  • Gan, L.; Zhang, S.; Zhang, Y.; He, S.; Tian, Y. Biosynthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles by a Halotolerant Bacillus endophyticus SCU-L. Prep. Biochem. Biotech. 2018, 48, 582–588.
  • Mazzola, P. G.; Penna, T. C. V.; Da, S.; Martins, A. M. Determination of Decimal Reduction Time (D Value) of Chemical Agents Used in Hospitals for Disinfection Purposes. BMC Infect. Dis. 2003, 3, 24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.