342
Views
9
CrossRef citations to date
0
Altmetric
Articles

Evaluation and characterization of Pleurotus eryngii extract-loaded chitosan nanoparticles as antimicrobial agents against some human pathogens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Valverde, M. E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 1–14. DOI: 10.1155/2015/376387.
  • Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovic, P.; Niksic, M.; Vrvic, M. M.; van Griensven, L. Antioxidants of Edible Mushrooms. Molecules 2015, 20, 19489–19525. DOI: 10.3390/molecules201019489.
  • Duman, R.; Taner, H.; Doğan, H. H. Bazı Makrofungusların Antimikrobiyal Aktiviteleri. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi 2007, 7, 55–65.
  • Dülger, B.; Şen, F.; Gücin, F.; Russula Delica, F. Makrofungusunun Antimikrobiyal Aktivitesi. Turk. J. Biol. 1999, 23, 127–133.
  • Dhamodharan, G.; Mirunalini, S. A. Detail Study of Phytochemical Screening, Antioxidant Potential and Acute Toxicity of Agaricus bisporus Extract and Its Chitosan Loaded Nanoparticles. J Pharm. Res. 2013, 6, 818–822. DOI: 10.1016/j.jopr.2013.07.025.
  • Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Hu, B. Optimization of Fabricationparameters to Produce Chitosan–Tripolyphosphate Nanoparticles for Delivery Oftea Catechins. J. Agric. Food Chem. 2008, 56, 7451–7458. DOI: 10.1021/jf801111c.
  • Jang, K. I.; Lee, H. G. Stability of Chitosan Nanoparticles for L-Ascorbic Acid during Heat Treatment in Aqueous Solution. J. Agric. Food Chem. 2008, 56, 1936–1941. DOI: 10.1021/jf073385e.
  • Li, X.; Zhang, Z.; Fakhri, A.; Gupta, V. K.; Agarwal, S. Adsorption and Photocatalysis Assisted Optimization for Drug Removal by Chitosan-Glyoxal/Polyvinylpyrrolidone/MoS2 Nanocomposites. Int. J. Biol. Macromol. 2019, 136, 469–475. DOI: 10.1016/j.ijbiomac.2019.06.003.
  • Gupta, V. K.; Gupta, D.; Agarwal, S.; Kothiyal, N. C.; Asif, M.; Sood, S.; Pathania, D. Fabrication of Chitosan-g-Poly(Acrylamide)/Cu Nanocomposite for the Removal of Pb(II) from Aqueous Solutions. J. Mol. Liq. 2016, 224, 1319–1325. DOI: 10.1016/j.molliq.2016.10.118.
  • Gupta, V. K.; Saravanan, R.; Agarwal, S.; Gracia, F.; Khan, M. M.; Qin, J.; Mangalaraja, R. V. Degradation of Azo Dyes under Different Wavelengths of UV Light with chitosan-SnO2 Nanocomposites. J. Mol. Liq. 2017, 232, 423–430. DOI: 10.1016/j.molliq.2017.02.095.
  • Peniche, H.; Peniche, C. Chitosan Nanoparticles: A Contribution to Nanomedicine. Polym. Int. 2011, 60, 883–889. DOI: 10.1002/pi.3056.
  • Grenha, A. Chitosan Nanoparticles: A Survey of Preparation Methods. J. Drug Target. 2012, 20, 291–300. DOI: 10.3109/1061186X.2011.654121.
  • Sofia, P.; Dimitrios, B.; Konstantinos, A.; Evangelos, K.; Manolis, G. Chitosan Nanoparticles Loaded with Dorzolamide and Pramipexole. Carbohydr. Polym. 2008, 73, 44–54.
  • Woranuch, S.; Yoksan, R. Eugenol-Loaded Chitosan Nanoparticles: I. Thermal Stability Improvement of Eugenol through Encapsulation. Carbohydr. Polym. 2013, 96, 578–585. DOI: 10.1016/j.carbpol.2012.08.117.
  • İlk, S.; Saglam, N.; Ozgen, M. Kaempferol Loaded Lecithin/Chitosan Nanoparticles: preparation, Characterization, and Their Potential Applications as a Sustainable Antifungal Agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. DOI: 10.1080/21691401.2016.1192040.
  • Divya, K.; Jisha, M. S. Chitosan Nanoparticles Preparation and Applications. Environ. Chem. Lett. 2018, 16, 101–112. DOI: 10.1007/s10311-017-0670-y.
  • Yildirim, A.; Acay, H.; Baran, M. F. Synthesis and Characterisation of Mushroom-Based Nanocomposite and Its Efficiency on Dye Biosorption via Antimicrobial Activity. Int. J. Env. Anal. Chem. 2020. DOI: 10.1080/03067319.2020.1739664.
  • Christensen, C. M. Edible Mushrooms. 2nd ed.; 1981, 118 pp.
  • Acay, H. Yenilebilen Yabani Mantar Morchella esculenta (L.) Pers.’nın Besinsel Kalitesi ve Biyoaktif Özelliklerinin Değerlendirilmesi. Mantar Dergisi 2018, 9, 95–105.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. DOI: 10.2147/IJN.S121956.
  • Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I. M. Resazurin-Based 96-Well Plate Microdilution Method for the Determination of Minimum Inhibitory Concentration of Biosurfactants. Biotechnol. Lett. 2016, 38, 1015–1019. DOI: 10.1007/s10529-016-2079-2.
  • Naskar, S.; Sharma, S.; Kuotsu, K. Chitosan-Based Nanoparticles: An Overview of Biomedical Applications and Its Preparation. J. Drug Delivery Sci. Technol. 2019, 49, 66–81. DOI: 10.1016/j.jddst.2018.10.022.
  • Deng, L. L.; Kang, X. F.; Liu, Y. Y.; Feng, F. Q.; Zhang, H. Characterization of Gelatin/Zeinfilms Fabricated by Electrospinning vs Solvent Casting. Food Hydrocoll. 2018, 74, 324–332. DOI: 10.1016/j.foodhyd.2017.08.023.
  • Gupta, V. K.; Ali, I.; Saleh, T. A.; Siddiqui, M. N.; Agarwal, S. Chromium Removal from Water by Activated Carbon Developed from Waste Rubber Tires. Environ. Sci. Pollut. Res. Int. 2013, 20, 1261–1268. DOI: 10.1007/s11356-012-0950-9.
  • Priya, B.; Gupta, V. K.; Pathania, D.; Singha, A. S. Synthesis, Characterization and Antibacterial Activity of Biodegradable Starch/PVA Composite Films Reinforced with Cellulosic Fibre. Carbohydr. Polym. 2014, 109, 171–179. DOI: 10.1016/j.carbpol.2014.03.044.
  • Saadat, Y.; Hosseinzadeh, S.; Eslami, H.; Afshar-Taromi, F. Preparation of Micron-Sized, Monodisperse Polymeric Nonsphericalparticles with Tunable Shapes by Micromolding–Polymerization. Coll. Polym. Sci. 2012, 290, 1333–1339. DOI: 10.1007/s00396-012-2712-0.
  • Baltacıoğlu, H.; Bayındırlı, A.; Severcan, M.; Severcan, F. Effect of Thermal Treatment on Secondary Structure and Conformational Change of Mushroom Polyphenol Oxidase (PPO) as Food Quality Related Enzyme: A FTIR Study. Food Chem. 2015, 187, 263–269. DOI: 10.1016/j.foodchem.2015.04.097.
  • Ahmad, M.; Gani, A.; Shah, A.; Gani, A.; Masoodi, F. A. Germination and Microwave Processing of Barley (Hordeum vulgare L) Changes the Structural and Physicochemical Properties of β-d-Glucan & Enhances Its Antioxidant Potential. Carbohydr. Polym. 2016, 153, 696–702. DOI: 10.1016/j.carbpol.2016.07.022.
  • Narayanan, K. B.; Park, H. H.; Han, S. S. Synthesis and Characterization of Biomatrixed-Gold Nanoparticlesby the Mushroom Flammulina velutipes and Its Heterogeneous Catalytic Potential. Chemosphere 2015, 141, 169–175. DOI: 10.1016/j.chemosphere.2015.06.101.
  • Zahir, A.; Aslam, Z.; Kamal, M. S.; Ahmad, W.; Abbas, A.; Shawabkeh, R. A. Development of Novel Cross-Linked Chitosan for the Removal of anionicCongo Red Dye. J. Mol. Liq. 2017, 244, 211–218. DOI: 10.1016/j.molliq.2017.09.006.
  • Han Li, Q. Y.; Zhang, W.; Li, X.; Geng, D.; Zhang, X.; He, D. Two-Step Route for Manufacturing the Bio-Mesopores Structure Functional Composites by Mushroom-Derived Carbon/Co3O4 for Lithium-Ion Batteries. Electroanal. Chem. 2019, 848, 113347. DOI: 10.1016/j.jelechem.2019.113347.
  • Singh, S.; Gaikwad, K. K.; Lee, M.; Suk Le, Y. Thermally Buffered Corrugated Packaging for Preserving Thepostharvest Freshness of Mushrooms (Agaricus bispours). J. Food Eng. 2018, 216, 11–19. DOI: 10.1016/j.jfoodeng.2017.07.013.
  • Cai, N.; Fu, J.; Chan, V.; Liu, M.; Chen, W.; Wang, J.; Zeng, H.; Yu, F. MnCo2O4@Nitrogen-Doped Carbon Nanofiber Composites with Meso-Microporous Structure for High-Performance Symmetric Süper Capacitors. J. Alloys Compd. 2019, 782, 251–262. DOI: 10.1016/j.jallcom.2018.12.044.
  • Zeng, S.; Wang, J.; Li, P.; Dong, H.; Wang, H.; Zhang, X.; Zhang, X. Efficient Adsorption of Ammonia by Incorporation of Metal Ionic Liquids Intosilica Gels as Mesoporous Composites. Chem. Eng. J. 2019, 370, 81–88. DOI: 10.1016/j.cej.2019.03.180.
  • Wu, J.; Niu, Y.; Jiao, Y.; Chen, Q. Fungal Chitosan from Agaricus bisporus (Lange) Sing. Chaidam Increased the Stability and Antioxidant Activity of Liposomes Modified with Biosurfactants and Loading Betulinic Acid. Int. J. Biol. Macromol. 2019, 123, 291–299. DOI: 10.1016/j.ijbiomac.2018.11.062.
  • Agarwal, S.; Sadegh, H.; Monajjemi, M.; Hamdy, A. S.; Ali, G. A. M.; Memar, A. O. H.; Shahryari-Ghoshekandi, R.; Tyagi, I.; Gupta, V. K. Efficient Removal of Toxic Bromothymol Blue and Methylene Blue from Wastewater by Polyvinyl Alcohol. J. Mol. Liq. 2016, 218, 191–197. DOI: 10.1016/j.molliq.2016.02.060.
  • Chhonker, Y. S.; Prasad, Y. D.; Chandasana, H.; Vishvkarma, A.; Mitra, K.; Shukla, P. K.; Bhatta, R. S. Amphotericin-B Entrapped Lecithin/Chitosan Nanoparticles for prolonged Ocular Application. Int. J. Biol. Macromol. 2015, 72, 1451–1458. DOI: 10.1016/j.ijbiomac.2014.10.014.
  • Yekeen, N.; Padmanabhan, E.; Idris, A. K.; Ibad, S. M. Surfactant Adsorption Behaviors onto Shale from Malaysian Formations: Influence of Silicon Dioxide Nanoparticles, Surfactant Type, Temperature, Salinity and Shale Lithology. Appl. Clay Sci. 2016, 123, 64–75.
  • Niaz, T.; Shabbir, S.; Noor, T.; Abbasi, R.; Imran, M. Alginate-Caseinate Based pH-Responsive Nano-Coacervates to Combatresistant Bacterial Biofilms in Oral Cavity. Int. J. Biol. Macromol. 2020. 10.1016/j.ijbiomac.2019.11.177.
  • Du, Z.; Liu, J.; Zhang, T.; Yu, Y.; Zhang, Y.; Zhai, J.; Huang, H.; Wei, S.; Ding, L.; Liu, B. Data on the Preparation Ofchitosan-Tripolyphosphate Nanoparticlesand Its Entrapment Mechanism for Eggwhite Derived Peptides. Data in Brief 2020, 28, 104841. DOI: 10.1016/j.dib.2019.104841.
  • Shang, X.; Tan, Q.; Liu, R.; Yu, K.; Li, P.; Zhao, G. P. In Vitro anti–Helicobacter pylori Effects of Medicinal Mushroom Extracts, with Special Emphasis on the Lion’s Mane Mushroom, Hericium erinaceus (Higher Basidiomycetes). Int. J. Med. Mushr. 2013, 15, 165–174. DOI: 10.1615/IntJMedMushr.v15.i2.50.
  • Schillaci, D.; Arizza, V.; Gargano, M. L.; Venturella, G. Antibacterial Activity of Mediterranean Oyster Mushrooms, Species of Genus Pleurotus (Higher Basidiomycetes). Int. J. Med. Mushr. 2013, 15, 591–594. DOI: 10.1615/IntJMedMushr.v15.i6.70.
  • Uzun, Y.; Atalan, E.; Keles, A.; Demirel, K. Pleurotus Eryngii (DC. ex Fr.) Quel. ve Agrocybe Cylindracea (DC. Fr.) Maire Makrofunguslarının Antimikrobiyal Aktivitesi. Mimar Sinan Güzel Sanatlar Üniversitesi Fen Edebiyat Fakültesi Dergisi 2004, 4, 125–133.
  • Roller, S.; Covill, N. The Antifungal Properties of Chitosan in Laboratory Media and Apple Juice. Int. J. Food Microbiol. 1999, 47, 67–77. DOI: 10.1016/S0168-1605(99)00006-9.
  • Peña, A.; Sánchez, N. S.; Calahorra, M. Effects of Chitosan on Candida albicans: Conditions for Its Antifungal Activity. BioMed Res. Int. 2013, 2013, 1–15. DOI: 10.1155/2013/527549.
  • Park, Y.; Mi-Hyun, K.; Seong-Cheol, P.; Hyeonsook, C.; Mi-Kyeong, J.; Jae-Woon, N.; Kyung-Soo, H. Investigation of the Antifungal Activity and Mechanism of Action of LMWS-Chitosan. J. Microbiol. Biotechnol. 2008, 18, 1729–1734.
  • Zhang, Y.; Yang, Y.; Tang, K.; Hu, X.; Zou, G. Physicochemical Characterization Andantioxidant Activity of Quercetin-Loaded Chitosan Nanoparticles. J. Appl. Polym. Sci. 2008, 107, 891–897. DOI: 10.1002/app.26402.
  • Divya, K.; Vijayan, S.; George, T. K.; Jisha, M. Antimicrobial Properties of Chitosan Nanoparticles: mode of Action and Factors Affecting Activity. Fibers Polym. 2017, 18, 221–230. DOI: 10.1007/s12221-017-6690-1.
  • Sarwar, A.; Katas, H.; Zin, N. M. Antibacterial Effects of Chitosan–Tripolyphosphate Nanoparticles: Impact of Particle Size Molecular Weight. J. Nanopart. Res. 2014, 16, 2517. DOI: 10.1007/s11051-014-2517-9.
  • Hosseini, S. F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Fabrication of Bio-Nanocomposite Films Based on Fish Gelatin Reinforced with Chitosan Nanoparticles. Food Hydrocoll. 2015, 44, 172–182. DOI: 10.1016/j.foodhyd.2014.09.004.
  • Nguyen, T.; Dzung, T.; Cuong, P. Assessment of Antifungal Activity of Turmeric Essential Oil-Loaded Chitosan Nanoparticles. J. Chem. Biol. Phys. Sci. 2014, 4, 2347–2356.
  • Saravanakumar, K.; Chelliah, R.; MubarakAli, D.; Jeevithan, E.; Oh, D. H.; Kathiresan, K.; Wang, M. H. Fungal Enzyme-Mediated Synthesis of Chitosan Nanoparticles and Its Biocompatibility, Antioxidant and Bactericidal Properties. Int. J. Biol. Macromol. 2018, 118, 1542–1549. DOI: 10.1016/j.ijbiomac.2018.06.198.
  • Sathiyabama, M.; Parthasarathy, R. Biological Preparation of Chitosan Nanoparticles and Its in Vitro Antifungal Efficacy against Some Phytopathogenic Fungi. Carbohyd. Polym 2016, 151, 321–325. DOI: 10.1016/j.carbpol.2016.05.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.