262
Views
4
CrossRef citations to date
0
Altmetric
Articles

Potential of “coalho” cheese whey as lactose source for β-galactosidase and ethanol co-production by Kluyveromyces spp. yeasts

, , ORCID Icon, , , ORCID Icon, & ORCID Icon show all

References

  • Escalante, H.; Castro, L.; Amaya, M. P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic Digestion of Cheese Whey: Energetic and Nutritional Potential for the Dairy Sector in Developing Countries. Waste Manag. 2018, 71, 711–718. DOI: 10.1016/j.wasman.2017.09.026.
  • Domingos, J. M. B.; Puccio, S.; Martinez, G. A.; Amaral, N.; Reis, M. A. M.; Bandini, S.; Fava, F.; Bertin, L. Cheese Whey Integrated Valorisation: Production, Concentration and Exploitation of Carboxylic Acids for the Production of Polyhydroxyalkanoates by a Fed-Batch Culture. Chem. Eng. J. 2018, 336, 47–53. DOI: 10.1016/j.cej.2017.11.024.
  • Treu, L.; Tsapekos, P.; Peprah, M.; Campanaro, S.; Giacomini, A.; Corich, V.; Kougias, P. G.; Angelidaki, I. Microbial Profiling during Anaerobic Digestion of Cheese Whey in Reactors Operated at Different Conditions. Bioresour. Technol. 2019, 275, 375–385. DOI: 10.1016/j.biortech.2018.12.084.
  • Soares, E. K. B.; Esmerino, E. A.; Ferreira, M. V. S.; Silva, M. A. A. P.; Freitas, M. Q.; Cruz, A. G. What Are the Cultural Effects on Consumers’ Perceptions? A Case Study Covering Coalho Cheese in the Brazilian Northeast and Southeast Area Using Word Association. Food Res. Int. 2017, 102, 553–558. DOI: 10.1016/j.foodres.2017.08.053.
  • Fontenele, M. A.; Bastos, M.; do, S. R.; dos Santos, K. M. O.; Bemquerer, M. P.; do Egito, A. S. Peptide Profile of Coalho Cheese: A Contribution for Protected Designation of Origin (PDO). Food Chem. 2017, 219, 382–390. DOI: 10.1016/j.foodchem.2016.09.171.
  • Andrade, R. P.; Melo, C. N.; Genisheva, Z.; Schwan, R. F.; Duarte, W. F. Yeasts from Canastra Cheese Production Process: Isolation and Evaluation of Their Potential for Cheese Whey Fermentation. Food Res. Int. 2017, 91, 72–79. DOI: 10.1016/j.foodres.2016.11.032.
  • Zhou, X.; Hua, X.; Huang, L.; Xu, Y. Bio-Utilization of Cheese Manufacturing Wastes (Cheese Whey Powder) for Bioethanol and Specific Product (Galactonic Acid) Production via a Two-Step Bioprocess. Bioresour. Technol. 2019, 272, 70–76. DOI: 10.1016/j.biortech.2018.10.001.
  • Carota, E.; Crognale, S.; D'Annibale, A.; Gallo, A. M.; Stazi, S. R.; Petruccioli, M. A Sustainable Use of Ricotta Cheese Whey for Microbial Biodiesel Production. Sci. Total Environ. 2017, 584–585, 554–560. DOI: 10.1016/j.scitotenv.2017.01.068.
  • Beniwal, A.; Saini, P.; Kokkiligadda, A.; Vij, S. Use of Silicon Dioxide Nanoparticles for β-Galactosidase Immobilization and Modulated Ethanol Production by Co-Immobilized K. marxianus and S. cerevisiae in Deproteinized Cheese Whey. LWT - Food Sci. Technol. 2018, 87, 553–561. DOI: 10.1016/j.lwt.2017.09.028.
  • Rao, M. V. R.; Dutta, S. M. Production of Beta-Galactosidase from Streptococcus thermophilus Grown in Whey. Appl. Environ. Microbiol. 1977, 34, 185–188.
  • Panesar, P. S.; Kaur, R.; Singh, R. S.; Kennedy, J. F. Biocatalytic Strategies in the Production of Galacto-Oligosaccharides and Its Global Status. Int. J. Biol. Macromol. 2018, 111, 667–679. DOI: 10.1016/j.ijbiomac.2018.01.062.
  • Suri, S.; Kumar, V.; Prasad, R.; Tanwar, B.; Goyal, A.; Kaur, S.; Gat, Y.; Kumar, A.; Kaur, J.; Singh, D. Considerations for Development of Lactose-Free Food. J. Nutr. Intermed. Metab 2019, 15, 27–34. DOI: 10.1016/j.jnim.2018.11.003.
  • Nooshkam, M.; Babazadeh, A.; Jooyandeh, H. Lactulose: Properties, Techno-Functional Food Applications, and Food Grade Delivery System. Trends Food Sci. Technol. 2018, 80, 23–34. DOI: 10.1016/j.tifs.2018.07.028.
  • Varela, J. A.; Puricelli, M.; Ortiz-Merino, R. A.; Giacomobono, R.; Braun-Galleani, S.; Wolfe, K. H.; Morrissey, J. P. Origin of Lactose Fermentation in Kluyveromyces lactis by Interspecies Transfer of a Neo-Functionalized Gene Cluster during Domestication. Curr. Biol. 2019, 29, 4284–4290. DOI: 10.1016/j.cub.2019.10.044.
  • Perpetuini, G.; Tittarelli, F.; Suzzi, G.; Tofalo, R. Cell Wall Surface Properties of Kluyveromyces marxianus Strains from Dairy-Products. Front. Microbiol. 2019, 10, 79. DOI: 10.3389/fmicb.2019.00079.
  • González-Delgado, I.; López-Muñoz, M. J.; Morales, G.; Segura, Y. Optimisation of the Synthesis of High Galacto-Oligosaccharides (GOS) from Lactose with β-Galactosidase from Kluyveromyces lactis. Int. Dairy J. 2016, 61, 211–219. DOI: 10.1016/j.idairyj.2016.06.007.
  • Tofalo, R.; Fasoli, G.; Schirone, M.; Perpetuini, G.; Pepe, A.; Corsetti, A.; Suzzi, G. The Predominance, Biodiversity and Biotechnological Properties of Kluyveromyces marxianus in the Production of Pecorino di Farindola Cheese. Int. J. Food Microbiol. 2014, 187, 41–49. DOI: 10.1016/j.ijfoodmicro.2014.06.029.
  • Lane, M. M.; Morrissey, J. P. Kluyveromyces marxianus: A Yeast Emerging from Its Sister’s Shadow. Fungal Biol. Rev. 2010, 24, 17–26. DOI: 10.1016/j.fbr.2010.01.001.
  • You, S.; Chang, H.; Yin, Q.; Qi, W.; Wang, M.; Su, R.; He, Z. Utilization of Whey Powder as Substrate for Low-Cost Preparation of β-Galactosidase as Main Product, and Ethanol as by-Product, by a Litre-Scale Integrated Process. Bioresour. Technol. 2017, 245, 1271–1276. DOI: 10.1016/j.biortech.2017.08.092.
  • Lima, A. F.; Cavalcante, K. F.; de Freitas, M.; de, F. M.; Rodrigues, T. H. S.; Rocha, M. V. P.; Gonçalves, L. R. B. Comparative Biochemical Characterization of Soluble and Chitosan Immobilized β-Galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochem. 2013, 48, 443–452. DOI: 10.1016/j.procbio.2013.02.002.
  • You, S.; Zhang, J.; Yin, Q.; Qi, W.; Su, R.; He, Z. Development of a Novel Integrated Process for Co-Production of β-Galactosidase and Ethanol Using Lactose as Substrate. Bioresour. Technol. 2017, 230, 15–23. DOI: 10.1016/j.biortech.2017.01.019.
  • Perini, B. L. B.; Souza, H. C. M.; Kelbert, M.; Apati, G. P.; Pezzin, A. P. T.; Schneider, A. L. S. Production of β-Galactosidase from Cheese Whey Using Kluyveromyces marxianus CBS 6556. Chem. Eng. Trans. 2013, 32, 991–996.
  • Braga, A. R. C.; Lemes, A. C.; Kalil, S. J. Single Chromatographic Step for β-Galactosidase Purification: Influence of Salt and Elution Parameters. Sep. Sci. Technol 2014, 49, 1817–1824. DOI: 10.1080/01496395.2014.902960.
  • Oliveira, S. D.; Araújo Padilha, C. E.; Asevedo, E. A.; Pimentel, V. C.; Araújo, F. R.; Macedo, G. R.; Santos, E. S. Utilization of Agroindustrial Residues for Producing Cellulases by Aspergillus fumigatus on Semi-Solid Fermentation. J. Environ. Chem. Eng. 2018, 6, 937–944. DOI: 10.1016/j.jece.2017.12.038.
  • AOAC – Association of Official Analytical Chemistry. Official Methods of Analysis. AOAC Internacional, 1996, 16.
  • Gusso, A. P.; Mattanna, P.; Pellegrini, L. G. D.; Cassanego, D. B.; Richards, N. S. P. D. S.; Ribeiro, A. D. S. Comparison of Different Analytical Methods for Quantification of Lipids in Ricotta Cream. Rev. Inst. Latic. 2012, 67, 51–55. DOI: 10.5935/2238-6416.20120078.
  • Bueno, A. V. I.; Jobim, C. C.; Ribeiro, M. G.; Oliveira, J. P. Dry Matter Method Obtaining and Chemical Composition of Roughages. Ciência Anim. Bras. 2017, 18, 1–8.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Vasconcelos, L. T. C.; de P.; Oliveira Filho, M. A.; Ribeiro, V. T.; Araújo, J. S.; de; de Sousa Junior, F. C.; Martins, D. R. A.; dos Santos, E. S. Optimization of the 503 Antigen Induction Strategy of Leishmania infantum chagasi Expressed in Escherichia coli M15. Prep. Biochem. Biotechnol. 2018, 48, 968–976. DOI: 10.1080/10826068.2018.1525563.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Portaria no 146 de 07 de março de 1996- Aprova os Regulamentos Técnicos de Identidade e Qualidade dos Produtos Lácteos, 1996.
  • Koushki, M.; Jafari, M.; Azizi, M. Comparison of Ethanol Production from Cheese Whey Permeate by Two Yeast Strains. J. Food Sci. Technol. 2012, 49, 614–619. DOI: 10.1007/s13197-011-0309-0.
  • Alves, M. P.; Moreira, R. O.; Paulo Júnior, H.; Martins, M. C M.; Perrone, I.; Carvalho, A. Whey: Technologies for Coproducts Production. Rev. do Inst. Laticínios Cândido Tostes 2014, 69, 212.
  • Jacinto, P. J. C.; Almeida, F. A.; Pinto, M. S.; Rodrigues, T. F.; Sobral, D.; Machado, G.; de, M. Use of Coalho Cheese Whey in the Fermented Dairy Drink Elaboration. Rev. Inst. Latic. “Cândido Tostes ” 2012, 67, 25–33. DOI: 10.5935/2238-6416.20120061.
  • Sampaio, F. C.; de Faria, J. T.; da Silva, M. F.; de Souza Oliveira, R. P.; Converti, A. Cheese Whey Permeate Fermentation by Kluyveromyces lactis: A Combined Approach to Wastewater Treatment and Bioethanol Production. Environ. Technol. [Online early access]. DOI: 10.1080/09593330.2019.1604813. Published Online: Apr 14, 2019. https://www.tandfonline.com/doi/citedby/10.1080/09593330.2019.1604813 (accessed Jun 1, 2019).
  • Manera, A. P.; Da Costa Ores, J.; Ribeiro, V. A.; André, C.; Burkert, V.; Kalil, S. J. Optimization of the Culture Medium for the Production of β-Galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol. Biotechnol. 2008, 46, 66–72.
  • Freitas, M. F. M.; Hortêncio, L. C.; Albuquerque, T. L.; Rocha, M. V. P.; Gonçalves, L. R. B. Simultaneous Hydrolysis of Cheese Whey and Lactulose Production Catalyzed by β-Galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst. Eng. 2020, 43, 711–722. DOI: 10.1007/s00449-019-02270-y.
  • Silva, R. R.; Siqueira, E. Q.; Nogueira, I. S. Environmental Impacts of Dairy Effluent on Waterway in the Pomba River Basin. Eng. Sanit. Ambient. 2018, 23, 217–228. DOI: 10.1590/s1413-41522018138062.
  • Parazzi, C.; Papin, L.; Belluco, A. E. S. Enzymatic Hydrolysis of the Starch of Sugar Cane Juice in Ethanolic Fermentation. Rev. Cta. 2017, 5, 15–22. DOI: 10.4322/2359-6643.05104.
  • Guimarães, P. M. R.; Teixeira, J. A.; Domingues, L. Fermentation of Lactose to Bio-Ethanol by Yeasts as Part of Integrated Solutions for the Valorisation of Cheese Whey. Biotechnol. Adv. 2010, 28, 375–384. DOI: 10.1016/j.biotechadv.2010.02.002.
  • Rubio-Texeira, M. Endless Versatility in the Biotechnological Applications of Kluyveromyces Lac Genes. Biotechnol. Adv. 2006, 24, 212–225. DOI: 10.1016/j.biotechadv.2005.10.001.
  • Wang, M.; Zhao, J.; Yang, Z.; Du, Z.; Yang, Z. Electrochemical Insights into the Ethanol Tolerance of Saccharomyces cerevisiae. Bioelectrochemistry 2007, 71, 107–112. DOI: 10.1016/j.bioelechem.2007.04.003.
  • Ricci, M.; Aggravi, M.; Bonechi, C.; Martini, S.; Aloisi, A. M.; Rossi, C. Metabolic Response to Exogenous Ethanol in Yeast: An in Vivo Statistical Total Correlation NMR Spectroscopy Approach. J. Biosci. 2012, 37, 749–755. DOI: 10.1007/s12038-012-9237-z.
  • Bleoanca, I.; Silva, A. R. C.; Pimentel, C.; Rodrigues-Pousada, C.; Menezes, R. A. Relationship between Ethanol and Oxidative Stress in Laboratory and Brewing Yeast Strains. J. Biosci. Bioeng. 2013, 116, 697–705. DOI: 10.1016/j.jbiosc.2013.05.037.
  • Henderson, C. M.; Lozada-Contreras, M.; Naravane, Y.; Longo, M. L.; Block, D. E. Analysis of Major Phospholipid Species and Ergosterol in Fermenting Industrial Yeast Strains Using Atmospheric Pressure Ionization Ion-Trap Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 12761–12770. DOI: 10.1021/jf203203h.
  • Vanegas, J. M.; Contreras, M. F.; Faller, R.; Longo, M. L. Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes. Biophys. J. 2012, 102, 507–516. DOI: 10.1016/j.bpj.2011.12.038.
  • Zhao, X. Q.; Bai, F. W. Mechanisms of Yeast Stress Tolerance and Its Manipulation for Efficient Fuel Ethanol Production. J. Biotechnol. 2009, 144, 23–30. DOI: 10.1016/j.jbiotec.2009.05.001.
  • Fischer, J.; Guidini, C. Z.; Santana, L. N. S.; Resende, M. M.; Cardoso, V. L.; Ribeiro, E. J. Optimization and Modeling of Lactose Hydrolysis in a Packed Bed System Using Immobilized β-Galactosidase from Aspergillus oryzae. J. Mol. Catal. B Enzym 2013, 85–86, 178–186. DOI: 10.1016/j.molcatb.2012.09.008.
  • Bosso, A.; Morioka, L. R. I.; Santos, L. F.; Suguimoto, H. H. Lactose Hydrolysis Potential and Thermal Stability of Commercial β-Galactosidase in UHT and Skimmed Milk. Food Sci. Technol. 2016, 36, 159–165. DOI: 10.1590/1678-457X.0085.
  • Fan, Y.; Hua, X.; Zhang, Y.; Feng, Y.; Shen, Q.; Dong, J.; Zhao, W.; Zhang, W.; Jin, Z.; Yang, R. Cloning, Expression and Structural Stability of a Cold-Adapted β-Galactosidase from Rahnella sp. R3. Protein Expr. Purif. 2015, 115, 158–164. DOI: 10.1016/j.pep.2015.07.001.
  • Hoyoux, A.; Jennes, I.; Dubois, P.; Genicot, S.; Dubail, F.; Francois, J. M.; Baise, E.; Feller, G.; Gerday, C. Cold-Adapted β-Galactosidase from the Antarctic Psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol. 2001, 67, 1529–1535. DOI: 10.1128/AEM.67.4.1529-1535.2001.
  • Sutendra, G.; Wong, S.; Fraser, M. E.; Huber, R. E. β Galactosidase (Escherichia Coli) Has a Second Catalytically Important Mg2+ Site. Biochem. Biophys. Res. Commun 2007, 352, 566–570. DOI: 10.1016/j.bbrc.2006.11.061.
  • Adalberto, P. R.; Massabni, A. C.; Carmona, E. C.; Goulart, A. J.; Marques, D. P.; Monti, R. Effect of Divalent Metal Ions on the Activity and Stability of β-Galactosidase Isolated from Kluyveromyces lactis. J. Basic Appl. Pharm. Sci 2010, 31, 143–150.
  • Chanalia, P.; Gandhi, D.; Attri, P.; Dhanda, S. Purification and Characterization of β-Galactosidase from Probiotic Pediococcus acidilactici and Its Use in Milk Lactose Hydrolysis and Galactooligosaccharide Synthesis. Bioorg. Chem. 2018, 77, 176–189. DOI: 10.1016/j.bioorg.2018.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.