202
Views
7
CrossRef citations to date
0
Altmetric
Review

Effects of carbon sources on production and properties of curdlan using Agrobaterium sp. DH-2

, , , , &

References

  • Zhang, H. B.; Nishinari, K.; Williams, M. A. K.; Foster, T. J.; Norton, I. T. A Molecular Description of the Gelation Mechanism of Curdlan. Int. J. Biol. Macromol. 2002, 30, 7–16. DOI: 10.1016/S0141-8130(01)00187-8.
  • Funami, T.; Yada, H.; Nakao, Y. Curdlan Properties for Application in Fat Mimetics for Meat Products. J. Food Sci. 2008, 63, 283–287. DOI: 10.1111/j.1365-2621.1998.tb15727.x.
  • Ahmad, M.; Nirmal, N. P.; Chuprom, J. Blend Film Based on Fish Gelatine/Curdlan for Packaging Applications: Spectral, Microstructural and Thermal Characteristics. RSC Adv. 2015, 5, 99044–99057. DOI: 10.1039/C5RA20925K.
  • Zhou, Y.; Xu, T.; Zhang, Y.; Zhang, C.; Lu, Z.; Lu, F.; Zhao, H. Effect of Tea Polyphenols on Curdlan/Chitosan Blending Film Properties and Its Application to Chilled Meat Preservation. Coatings 2019, 9, 1–13. DOI: 10.3390/coatings9040262.
  • Goodridge, H. S.; Wolf, A. J.; Underhill, D. M. Beta-glucan Recognition by the Innate Immune System. Immunol. Rev. 2009, 230, 38–50. DOI: 10.1111/j.1600-065X.2009.00793.x.
  • Li, P.; Zhang, X.; Cheng, Y.; Li, J.; Xiao, Y.; Zhang, Q.; Zong, A.; Zhong, C.; Wang, F. Preparation and in Vitro Immunomodulatory Effect of Curdlan Sulfate. Carbohydr. Polym. 2014, 102, 852–861. DOI: 10.1016/j.carbpol.2013.10.078.
  • Rui, K.; Tian, J.; Tang, X.; Ma, J.; Xu, P.; Tian, X.; Wang, Y.; Xu, H.; Lu, L.; Wang, S. Curdlan Blocks the Immune Suppression by Myeloid-Derived Suppressor Cells and Reduces Tumor Burden. Immunol. Res. 2016, 64, 931–939. DOI: 10.1007/s12026-016-8789-7.
  • Chen, M.; Liang, P. Synthesis and Antibacterial Activity of Quaternized Curdlan. Polym. Bull. 2017, 74, 4251–4266. DOI: 10.1007/s00289-017-1951-0.
  • Basha, R. Y.; Kumar, T. S. S.; Selvaraj, R.; Doble, M. Silver Loaded Nanofibrous Curdlan Mat for Diabetic Wound Healing: An In Vitro and In Vivo Study. Macromol. Mater. Eng. 2018, 303,1800234. DOI: 10.1002/mame.201800234.
  • Klimek, K.; Przekora, A.; Benko, A.; Niemiec, W.; Blazewicz, M.; Ginalska, G. The Use of Calcium Ions instead of Heat Treatment for β-1,3-Glucan Gelation Improves Biocompatibility of the β-1,3-Glucan/HA Bone Scaffold. Carbohydr. Polym. 2017, 164, 170–178. DOI: 10.1016/j.carbpol.2017.02.015.
  • Qin, Z.; Lin, S.; Qiu, Y. J.; Chen, Q. M.; Zhang, Y.; Zhou, J. C.; Zhao, L. M. One-Step Immobilization-Purification of Enzymes by Carbohydrate-Binding Module Family 56 Tag Fusion. Food Chem. 2019, 299, 125037. DOI: 10.1016/j.foodchem.2019.125037.
  • Phillips, K. R.; Pik, J.; Lawford, H. G.; Lavers, B.; Kligerman, A.; Lawford, G. R. Production of Curdlan-Type Polysaccharide by Alcaligenes faecalis in Batch and Continuous Culture. Can. J. Microbiol. 1983, 29, 1331–1338. DOI: 10.1139/m83-207.
  • Zhang, Q.; Sun, J.; Wang, Z.; Hang, H.; Zhao, W.; Zhuang, Y.; Chu, J. Kinetic Analysis of Curdlan Production by Alcaligenes faecalis with Maltose, Sucrose, Glucose and Fructose as Carbon Sources. Bioresour. Technol. 2018, 259, 319–324. DOI: 10.1016/j.biortech.2018.03.059.
  • West, T. P. Effect of Nitrogen Source Concentration on Curdlan Production by Agrobacterium sp. ATCC 31749 Grown on Prairie Cordgrass Hydrolysates. Prep. Biochem. Biotechnol. 2016, 46, 85–90. DOI: 10.1080/10826068.2014.985835.
  • Zhang, H. T.; Zhu, L.; Liu, D.; Zhan, X. B.; Ding, J.; Lin, C. C. Model-Based Estimation of Optimal Dissolved Oxygen Profile in Agrobacterium sp. Fed-Batch Fermentation for Improvement of Curdlan Production Under Nitrogen-Limited Condition. Biochem. Eng. J. 2015, 103, 12–21. DOI: 10.1016/j.bej.2015.06.012.
  • Lee, J. H.; Park, Y. H. Optimal Production of Curdlan by Agrobacterium sp. With Feedback Inferential Control of Optimal pH Profile. Biotechnol. Lett. 2001, 23, 525–530. DOI: 10.1023/A:1010374519891.
  • Saudagar, P. S.; Singhal, R. S. Fermentative Production of Curdlan. Appl. Biochem. Biotechnol. 2004, 118, 21–31. DOI: 10.1385/abab:118:1-3:021.
  • Lee, I. Y.; Seo, W. T.; Kim, G. J.; Kim, M. K.; Park, C. S.; Park, Y. H. Production of Curdlan Using Sucrose or Sugar Cane Molasses by Two-Step Fed-Batch Cultivation of Agrobacterium Species. J. Ind. Microbiol. Biotechnol. 1997, 18, 255–259. DOI: 10.1038/sj.jim.2900378.
  • Mohsin, A.; Sun, J. Y.; Khan, I. M.; Hang, H. F.; Tariq, M.; Tian, X. W.; Ahmed, W.; Niazi, S.; Zhuang, Y. P.; Chu, J.; et al. Sustainable Biosynthesis of Curdlan from Orange Waste by Using Alcaligenes faecalis: A Systematically Modeled Approach. Carbohydr. Polym. 2019, 205, 626–635. DOI: 10.1016/j.carbpol.2018.10.047.
  • West, T. P.; Nemmers, B. Curdlan Production by Agrobacterium sp. ATCC 31749 on an Ethanol Fermentation Coproduct. J. Basic Microbiol. 2008, 48, 65–68. DOI: 10.1002/jobm.200700294.
  • West, T. P.; Peterson, J. L. Production of the Polysaccharide Curdlan by an Agrobacterium Strain Grown on a Plant Biomass Hydrolysate. Can. J. Microbiol. 2014, 60, 53–56. DOI: 10.1139/cjm-2013-0714.
  • Wu, S. J.; Lu, M. S.; Fang, Y. W.; Wu, L. L.; Xu, Y.; Wang, S. J. Production of Curdlan Grown on Cassava Starch Waste Hydrolysates. J. Polym. Environ. 2018, 26, 33–38. DOI: 10.1007/s10924-016-0912-2.
  • Kim, M. K.; Ryu, K. E.; Choi, W. A.; Rhee, Y. H.; Lee, I. Y. Enhanced Production of (1 → 3)-β-D-Glucan by a Mutant Strain of Agrobacterium Species. Biochem. Eng. J. 2003, 16, 163–168. DOI: 10.1016/S1369-703X(03)00032-9.
  • Sasaki, T.; Abiko, N.; Sugino, Y.; Nitta, K. Dependence on Chain Length of Antitumor Activity of (1 → 3)-β-D-Glucan from Alcaligenes faecalis Var. myxogenes, IFO 13140, and Its Acid-Degraded Products. Cancer Res. 1978, 38, 379–383. DOI: 101063/1.340701
  • Hida, T. H.; Ishibashi, K.; Miura, N. N.; Adachi, Y.; Shirasu, Y.; Ohno, N. Cytokine Induction by a Linear 1,3-Glucan, Curdlan-Oligo, in Mouse Leukocytes In Vitro. Inflamm. Res. 2009, 58, 9–14. DOI: 10.1007/s00011-008-8141-3.
  • Chen, Y. F.; Zhu, Q.; Wu, S. J. Preparation and Gel Properties of Low Molecular Weight Curdlan by Hydrolysis of Curdlan with Commercial α-amylase. Carbohydr. Polym. 2014, 113, 362–364. DOI: 10.1016/j.carbpol.2014.07.034.
  • Kalyanasundaram, G. T.; Doble, M.; Gummadi, S. N. Production and Downstream Processing of (1→3)-β-D-Glucan from Mutant Strain of Agrobacterium sp. ATCC 31750. AMB Express 2012, 2, 31. DOI: 10.1186/2191-0855-2-31.
  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Funami, T.; Funami, M.; Yada, H.; Nakao, Y. A Rheological Study on the Effects of Heating Rate and Dispersing Method on the Gelling Characteristics of Curdlan Aqueous Dispersions. Food Hydro. 2000, 14, 509–518. DOI: 10.1016/S0268-005X(00)00031-X.
  • Hrmova, M.; Stone, B. A.; Fincher, G. B. High-Yield Production, Refolding and a Molecular Modelling of the Catalytic Module of (1,3)-Beta-D-glucan (Curdlan) Synthase from Agrobacterium sp. Glycoconj. J. 2010, 27, 461–476. DOI: 10.1007/s10719-010-9291-4.
  • Jin, Y.; Zhang, H. B.; Yin, Y. M.; Nishinari, K. Comparison of Curdlan and Its Carboxymethylated Derivative by Means of Rheology, DSC, and AFM. Carbohydr. Res. 2006, 341, 90–99. DOI: 10.1016/j.carres.2005.11.003.
  • Mangolim, C. S.; da Silva, T. T.; Fenelon, V. C.; do Nascimento, A.; Sato, F.; Matioli, G. Use of FT-IR, FT-Raman and Thermal Analysis to Evaluate the Gel Formation of Curdlan Produced by Agrobacterium sp. IFO 13140 and Determination of Its Rheological Properties with Food Applicability. Food Chem. 2017, 232, 369–378. DOI: 10.1016/j.foodchem.2017.04.031.
  • Zhang, L. N.; Zhang, M.; Dong, J.; Guo, J.; Song, Y. Y.; Cheung, P. C. K. Chemical Structure and Chain Conformation of the Water-Insoluble Glucan Isolated from Pleurotus Tuber-Regium. Biopolymers 2001, 59, 457–464. DOI: 10.1002/1097-0282(200111)59:63.0.CO;2-1.
  • Prakash, S.; Rajeswari K.; Divya, P.; Ferlin, M.; Rajeshwari, C. T.; Vanavil, B. Optimization and Production of Curdlan Gum Using Bacillus cereus PR3 Isolated from Rhizosphere of Leguminous Plant. Prep. Biochem. Biotechnol. 2018, 48, 408–418. DOI: 10.1080/10826068.2018.1451886.
  • Molina-Ramirez, C.; Castro, C.; Zuluaga, R.; Ganan, P. Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural by-Products as Alternative Low-Cost Feedstocks. J. Polym. Environ. 2018, 26, 830–837. DOI: 10.1007/s10924-017-0993-6.
  • Ruffing, A. M.; Castro-Melchor, M.; Hu, W.-S.; Chen, R. R. Genome Sequence of the Curdlan-Producing Agrobacterium sp. Strain ATCC 31749. J. Bacteriol. 2011, 193, 4294–4295. DOI: 10.1128/JB.05302-11.
  • Ruffing, A. M.; Chen, R. R. Transcriptome Profiling of a Curdlan-Producing Agrobacterium Reveals Conserved Regulatory Mechanisms of Exopolysaccharide Biosynthesis. Microb. Cell Fact. 2012, 11, 17. DOI: 10.1186/1475-2859-11-17.
  • Ruffing, A. M.; Chen, R. R. Metabolic Engineering of Agrobacterium sp. Strain ATCC 31749 for Production of an Alpha-Gal Epitope. Microb. Cell Fact. 2010, 9, 1. DOI: 10.1186/1475-2859-9-1.
  • Nakata, M.; Kawaguchi, T.; Kodama, Y.; Konno, A. Characterization of Curdlan in Aqueous Sodium Hydroxide. Polymer 1998, 39, 1475–1481. DOI: 10.1016/S0032-3861(97)00417-5.
  • Salah, R. B.; Jaouadi, B.; Bouaziz, A.; Chaari, K.; Blecker, C.; Derrouane, C.; Attia, H.; Besbes, S. Fermentation of Date Palm Juice by Curdlan Gum Production from Rhizobium radiobacter ATCC 6466™: Purification, Rheological and Physico-Chemical Characterization. LWT–Food Sci. Technol. 2011, 44, 1026–1034. DOI: 10.1016/j.lwt.2010.11.023.
  • Shih, I. L.; Yu, J. Y.; Hsieh, C.; Wu, J. Y. Production and Characterization of Curdlan by Agrobacterium sp. Biochem. Eng. J. 2009, 43, 33–40. DOI: 10.1016/j.bej.2008.08.006.
  • Amado, I. R.; Vazquez, J. A.; Pastrana, L.; Teixeira, J. A. Microbial Production of Hyaluronic Acid from Agro-Industrial by-Products: Molasses and Corn Steep Liquor. Biochem. Eng. J. 2017, 117, 181–187. DOI: 10.1016/j.bej.2016.09.017.
  • Sheng, L.; Tong, Q.; Ma, M. Why Sucrose Is the Most Suitable Substrate for Pullulan Fermentation by Aureobasidium pullulans CGMCC1234? Enzyme Microb. Technol. 2016, 92, 49–55. DOI: 10.1016/j.enzmictec.2016.06.016.
  • Puliga, S. L.; Handa, S.; Gummadi, S. N.; Doble, M. Enhancement and Scale-up of β-(1, 3) Glucan Production by Agrobacterium sp. Int. J. Food Eng. 2010, 6, 1–20. DOI: 10.2202/1556-3758.1736.
  • Wang, X. Y. Z.; Dong, J. J.; Xu, G. C.; Han, R. Z.; Ni, Y. Enhanced Curdlan Production with Nitrogen Feeding During Polysaccharide Synthesis by Rhizobium radiobacter. Carbohydr. Polym. 2016, 150, 385–391. DOI: 10.1016/j.carbpol.2016.05.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.