186
Views
4
CrossRef citations to date
0
Altmetric
Articles

An integrated approach to the sustainable production of xylanolytic enzymes from Aspergillus niger using agro-industrial by-products

, , , &

References

  • Bian, H.; Gao, Y.; Luo, J.; Jiao, L.; Wu, W.; Fang, G.; Dai, H. Lignocellulosic Nanofibrils Produced Using Wheat Straw and Their Pulping Solid Residue: From Agricultural Waste to Cellulose Nanomaterials. Waste Manag. 2019, 91, 1–8. DOI: 10.1016/j.wasman.2019.04.052.
  • Ziemiński, K.; Romanowska, I.; Kowalska, M. Enzymatic Pretreatment of Lignocellulosic Wastes to Improve Biogas Production. Waste Manag. 2012, 32, 1131–1137. DOI: 10.1016/j.wasman.2012.01.016.
  • Myat, L.; Ryu, G. Characteristics of Destarched Corn Fiber Extrudates for Ethanol Production. J. Cereal Sci. 2014, 60, 289–296. DOI: 10.1016/j.jcs.2014.06.006.
  • Abdeshahian, P.; Samat, N.; Hamid, A. A.; Mohtar, W.; Yusoff, W. Utilization of Palm Kernel Cake for Production of b-Mannanase by Aspergillus niger FTCC 5003 in Solid Substrate Fermentation Using an Aerated Column Bioreactor. J. Ind. Microbiol. Biotechnol. 2010, 37, 103–109. DOI: 10.1007/s10295-009-0658-0.
  • Boggione, M. J.; Allasia, M. B.; Farruggia, B. M. Potential Use of Soybean Hulls and Waste Paper as Supports in SSF for Cellulase Production by Aspergillus niger. Biocatal. Agric. Biotechnol. 2016, 6, 1–8. DOI: 10.1016/j.bcab.2016.02.003.
  • Yuan, R.; Yu, S.; Shen, Y. Pyrolysis and Combustion Kinetics of Lignocellulosic Biomass Pellets with Calcium-Rich Wastes from Agro-Forestry Residues. Waste Manage. (Oxford) 2019, 87, 86–96. DOI: 10.1016/j.wasman.2019.02.009.
  • Arun, C.; Sivashanmugam, P. Identification and Optimization of Parameters for the Semi-Continuous Production of Garbage Enzyme from Pre-Consumer Organic Waste by Green RP-HPLC Method. Waste Manag. 2015, 44, 28–33. DOI: 10.1016/j.wasman.2015.07.010.
  • Kazemi, M.; Khodaiyan, F.; Hosseini, S. S.; Najari, Z. An Integrated Valorization of Industrial Waste of Eggplant: Simultaneous Recovery of Pectin, Phenolics and Sequential Production of Pullulan. Waste Manag. 2019, 100, 101–111. DOI: 10.1016/j.wasman.2019.09.013.
  • Leitão, V.; Noronha, E. F.; Camargo, B. R.; Hamann, P. R.; Steindorff, A. S.; Quirino, B. F.; Valle de Sousa, M.; Ulhoa, C. J.; Felix, C. R. Growth and Expression of Relevant Metabolic Genes of Clostridium Thermocellum Cultured on Lignocellulosic Residues. J. Ind. Microbiol. Biotechnol. 2017, 44, 825–834. DOI: 10.1007/s10295-017-1915-2.
  • Liao, H.; Sun, S.; Wang, P.; Bi, W.; Tan, S.; Wei, Z.; Mei, X.; Liu, D.; Raza, W.; Shen, Q.; Xu, Y. A New Acidophilic Endo-β-1,4-Xylanase from Penicillium oxalicum: Cloning, Purification, and Insights into the Influence of Metal Ions on Xylanase Activity. J. Ind. Microbiol. Biotechnol. 2014, 41, 1071–1083. DOI: 10.1007/s10295-014-1453-0.
  • Loureiro, D. B. D. B.; Romanini, D.; Tubio, G. Structural and Functional Analysis of Aspergillus niger Xylanase to Be Employed in Polyethylenglycol/Salt Aqueous Two-Phase Extraction. Biocatal. Agric. Biotechnol. 2016, 5, 204–210. DOI: 10.1016/j.bcab.2015.12.008.
  • Xia, J.; Shu, J.; Yao, K.; Xu, J.; Yu, X.; Xue, X.; Ma, D.; Lin, X. Synergism of Cellulase, Pectinase and Xylanase on Hydrolyzing Differently Pretreated Sweet Potato Residues. Prep. Biochem. Biotechnol. 2020, 50, 181–190. DOI: 10.1080/10826068.2019.1680390.
  • Kaur, A.; Varghese, L. M.; Battan, B.; Patra, A. K.; Mandhan, R. P.; Mahajan, R. Bio-Degumming of Banana Fibers Using Eco-Friendly Crude Xylano-Pectinolytic Enzymes. Prep. Biochem. Biotechnol. 2020, 50, 521–528. DOI: 10.1080/10826068.2019.1710713.
  • Victoria, M.; Esteban, P.; Morilla, A.; Belén, M.; Nadia, A.; Valetti, W.; Tubio, G.; Boggione, M. J. An Eco-Friendly Method of Purification for Xylanase from Aspergillus niger by Polyelectrolyte Precipitation. J. Polym. Environ. 2019, 27, 2895–2905. DOI: 10.1007/s10924-019-01571-3.
  • Polizeli, M. L. T. M. T. M.; Rizzatti, A. C. S. S.; Monti, R.; Terenzi, H. F.; Jorge, J. A.; Amorim, D. S. Xylanases from Fungi: Properties and Industrial Applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. DOI: 10.1007/s00253-005-1904-7.
  • Reisman, H. B. Economic Analysis of Fermentation Processes; CRC Press Taylor & Francis Group: Boca Raton, FL, 2019.
  • Treichel, H.; Thamarys, F. G.; Scapini, T.; Frumi Camargo, A.; Spitza Stefanski, F.; Venturin, B. Utilising Biomass in Biotechnology: A Circular Approach Discussing the Pretreatment of Biomass, Its Applications and Economic Considerations; Springer: Cham, Switzerland, 2019.
  • Malpiedi, L. P.; Taddia, A.; Haidar, C. N.; Tubio, G. Enzyme Technologies. In Advances in Food Bioproducts and Bioprocessing Technologies; Chávez-González, M. L.; Balagurusamy, N.; Aguilar, C. N., Eds.; Taylor & Francis Group: Boca Raton, FL, 2019; pp. 97–108.
  • Torres-Barajas, L. R.; Alvarez-Zúñiga, M. T.; Aguilar-Osorio, G.; Ruth, L.; Alvarez-Zúñiga, M. T.; Aguilar-Osorio, G. Analysis of Polysaccharide Hydrolases Secreted by Aspergillus flavipes FP-500 on Corn Cobs and Wheat Bran as Complex Carbon Sources. Prep. Biochem. Biotechnol. 2020, 50, 390–400. DOI: 10.1080/10826068.2019.1700518.
  • Amorim, C. C.; Farinas, C. S.; Miranda, E. A. Liquefied Wheat Bran as Carbon Source and Inducer in High-Solids Submerged Cultivation of Aspergillus niger for Xylanase Production. Biocatal. Agric. Biotechnol. 2019, 21, 101346. DOI: 10.1016/j.bcab.2019.101346.
  • Ezeilo, U. R.; Wahab, R. A.; Mahat, N. A. Optimization Studies on Cellulase and Xylanase Production by Rhizopus Oryzae UC2 Using Raw Oil Palm Frond Leaves as Substrate under Solid State Fermentation. Renewable Energy 2019, 154, 5–12. DOI: 10.1016/j.renene.2019.11.149.
  • Ravindran, R.; Williams, G. A.; Jaiswal, A. K. Spent Coffee Waste as a Potential Media Component for Xylanase Production and Potential Application in Juice Enrichment. Foods 2019, 8, 585–590. DOI: 10.3390/foods8110585.
  • Yuan, Q. P.; Wang, J. D.; Zhang, H.; Qian, Z. M. Effect of Temperature Shift on Production of Xylanase by Aspergillus niger. Process Biochem. 2005, 40, 3255–3257. DOI: 10.1016/j.procbio.2005.03.020.
  • Bailey, M. J.; Biely, P.; Poutanen, K. Interlaboratory Testing of Methods for Assay of Xylanase Activity. J. Biotechnol. 1992, 23, 257–270. DOI: 10.1016/0168-1656(92)90074-J.
  • Ghose, T. K. Measurement of Cellulase Activities. Int. Union Pure Appl. Chem. 1987, 59, 257–268. DOI: 10.1351/pac198759020257.
  • Miller, G. L. Use of Dinitrosaiicyiic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Walker, J. M. The Bicinchoninic for Protein Acid (BCA) Assay Quantitation. In The Protein Protocols Handbook; Walker, J. M., Ed.; Humana Press: New York, NY, 2002; pp 16–19.
  • Janser, R.; de Castro, S.; Sato, H. H. Synergistic Effects of Agroindustrial Wastes on Simultaneous Production of Protease and α-Amylase under Solid State Fermentation Using a Simplex Centroid Mixture Design. Industrial Crops & Products 2013, 49, 813–821. DOI: 10.1016/j.indcrop.2013.07.002.
  • Mandels, M.; Sternberg, D. Recent Advances in Cellulase Technology. In Proceedings of the Conference: Annual Meeting of the Society of Fermentation Technology, Osaka, Japan, 30 Oct 1975; Japan, 1976; pp 267–286
  • Taddia, A.; Boggione, M. J.; Tubio, G. Screening of Different Agroindustrial By-Products for Industrial Enzymes Production by Fermentation Processes. J. Food Sci. Technol. 2018, 54, 1027–1035.
  • Sarkar, N.; Ghosh, S. K.; Bannerjee, S.; Aikat, K. Bioethanol Production from Agricultural Wastes: An Overview. Renewable Energy 2012, 37, 19–27. DOI: 10.1016/j.renene.2011.06.045.
  • Goyal, M.; Kalra, K. L.; Sareen, V. K.; Soni, G. Xylanase Production with Xylan Rich Lignocellulosic Wastes by a Local Soil Isolate of Trichoderma viride. Braz. J. Microbiol. 2008, 39, 535–541. DOI: 10.1590/S1517-83822008000300025.
  • Galbe, M.; Zacchi, G. A Review of the Production of Ethanol from Softwood. Appl. Microbiol. Biotechnol. 2002, 59, 618–628. DOI: 10.1007/s00253-002-1058-9.
  • Khanahmadi, M.; Arezi, I.; Amiri, M.; Miranzadeh, M. Bioprocessing of Agro-Industrial Residues for Optimization of Xylanase Production by Solid-State Fermentation in Flask and Tray Bioreactor. Biocatal. Agric. Biotechnol. 2018, 13, 272–282. DOI: 10.1016/j.bcab.2018.01.005.
  • Mangan, D.; Cornaggia, C.; Liadova, A.; Draga, A.; Ivory, R.; Evans, D. E.; Mccleary, B. V. Development of an Automatable Method for the Measurement of Endo-1, 4-β-Xylanase Activity in Barley Malt and Initial Investigation into the Relationship between Endo-1, 4-β-Xylanase Activity and Wort Viscosity. J. Cereal Sci. 2018, 84, 90–94. DOI: 10.1016/j.jcs.2018.10.003.
  • Guo, X.; Jin, Y.; Du, J. Extraction and Purification of an Endo-1,4-b-Xylanase from Wheat Malt. Journal of Cereal Science Journal 2017, 74, 218–223. DOI: 10.1016/j.jcs.2017.01.007.
  • Pal, A.; Khanum, F. Purification of Xylanase from Aspergillus niger DFR-5: Individual and Interactive Effect of Temperature and pH on Its Stability. Process Biochem. 2011, 46, 879–887. DOI: 10.1016/j.procbio.2010.12.009.
  • Díaz, A. B.; Bolívar, J.; de Ory, I.; Caro, I.; Blandino, A. Applicability of Enzymatic Extracts Obtained by Solid State Fermentation on Grape Pomace and Orange Peels Mixtures in Must Clarification. Food Science and Technology 2011, 44, 840–846. DOI: 10.1016/j.lwt.2010.12.006.
  • Mehnati-Najafabadi, V.; Taheri-Kafrani, A.; Bordbar, A. Xylanase Immobilization on Modified Superparamagnetic Graphene Oxide Nanocomposite: Effect of PEGylation on Activity and stability. Int. J. Biol. Macromol. 2018, 107, 418–425. DOI: 10.1016/j.ijbiomac.2017.09.013.
  • Ding, C.; Li, M.; Hu, Y. High-Activity Production of Xylanase by Pichia stipitis: Purification, Characterization, Kinetic Evaluation and Xylooligosaccharides Production. Int. J. Biol. Macromol. 2018, 117, 72–77. DOI: 10.1016/j.ijbiomac.2018.05.128.
  • Dobrev, G.; Zhekova, B.; Delcheva, G.; Koleva, L.; Tziporkov, N.; Pishtiyski, I. Purification and Characterization of Endoxylanase Xln-1 from Aspergillus niger B03. World J. Microbiol. Biotechnol. 2009, 25, 2095–2102. DOI: 10.1007/s11274-009-0112-5.
  • David, A.; Singh Chauhan, P.; Kumar, A.; Angural, S.; Kumar, D.; Puri, N.; Gupta, N. Coproduction of Protease and Mannanase from Bacillus nealsonii PN-11 in Solid State Fermentation and Their Combined Application as Detergent Additives. Int. J. Biol. Macromol. 2018, 108, 1176–1184. DOI: 10.1016/j.ijbiomac.2017.09.037.
  • Polizzi, K. M.; Bommarius, A. S.; Broering, J. M.; Chaparro-Riggers, J. F. Stability of Biocatalysts. Curr. Opin. Chem. Biol. 2007, 11, 220–225. DOI: 10.1016/j.cbpa.2007.01.685.
  • Belluzo, S.; Boeris, V.; Farruggia, B.; Picó, G. Influence of Stabilizers Cosolutes on Catalase Conformation. Int. J. Biol. Macromol. 2011, 49, 936–941. DOI: 10.1016/j.ijbiomac.2011.08.012.
  • Kumar, V.; Shukla, P. Extracellular Xylanase Production from T. lanuginosus VAPS24 at Pilot Scale and Thermostability Enhancement by Immobilization. Process Biochem. 2018, 71, 53–60. DOI: 10.1016/j.procbio.2018.05.019.
  • Zhang, J.; Li, M.; Zhang, Y. Enhancing the Thermostability of Recombinant Cyclodextrin Glucanotransferase via Optimized Stabilizer. Process Biochem. 2018, 67, 64–70. DOI: 10.1016/j.procbio.2018.02.006.
  • Ray, R. C.; Panda, S. K.; Swain, M. R.; Sivakumar, P. S. Proximate Composition and Sensory Evaluation of Anthocyanin-Rich Purple Sweet Potato (Ipomoea batatas L.) Wine. International Journal of Food Science and Technology 2012, 47, 452–458. DOI: 10.1111/j.1365-2621.2011.02861.x.
  • Oguro, Y.; Nakamura, A.; Kurahashi, A. Effect of Temperature on Saccharification and Oligosaccharide Production Efficiency in Koji Amazake. J. Biosci. Bioeng. 2019, 127, 570–574. DOI: 10.1016/j.jbiosc.2018.10.007.
  • Banerjee, D.; Mukherjee, S.; Pal, S.; Khowala, S. Enhanced Saccharification Efficiency of Lignocellulosic Biomass of Mustard Stalk and Straw by Salt Pretreatment. Ind. Crops Prod. 2016, 80, 42–49. DOI: 10.1016/j.indcrop.2015.10.049.
  • Sutay Kocabaş, D.; Güder, S.; Özben, N. Purification Strategies and Properties of a Low-Molecular Weight Xylanase and Its Application in Agricultural Waste Biomass Hydrolysis. J. Mol. Catal. B: Enzym. 2015, 115, 66–75. DOI: 10.1016/j.molcatb.2015.01.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.