245
Views
3
CrossRef citations to date
0
Altmetric
Articles

Optimized production of extracellular alkaline protease from Aspergillus tamarii with natural by-products in a batch stirred tank bioreactor

, &

References

  • Reddy, L. V. A.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Optimization of Alkaline Protease Production by Batch Culture of Bacillus sp. RKY3 through Plackett–Burman and Response Surface Methodological Approaches. Bioresour. Technol. 2008, 99, 2242–2249.
  • Sujitha, P.; Kavitha, S.; Shakilanishi, S.; Babu, N. K. C.; Shanthi, C. Enzymatic Dehairing: A Comprehensive Review on the Mechanistic Aspects with Emphasis on Enzyme Specificity. Int. J. Biol. Macromol. 2018, 118, 168–179.
  • Dhandapani, B.; Mahadevan, S.; Mandal, A. B. Energetics of Growth of Aspergillus tamarii in a Biological Real-Time Reaction Calorimeter. Appl. Microbiol. Biotechnol. 2012, 93, 1927–1936.
  • Dayanandan, A.; Kanagaraj, J.; Sounderraj, L.; Govindaraju, R.; Rajkumar, G. S. Application of an Alkaline Protease in Leather Processing: An Ecofriendly Approach. J. Clean. Prod. 2003, 11, 533–536.
  • Soerensen, N. H.; Hoff, T.; Oestergaard, P. R.; Cassland, P. Enzyme Dehairing of Skins and Hides. Patent no. WO2011161135A1, 2014 December 29.
  • Sivasubramanian, S.; Naidu, R. B.; Kamini, N. R.; Gowthaman, M. K.; Chandrababu, N. K.; Puvanakrishnan, R.; Saikumari, Y. K.; Balaram, P.; Saravanan, P.; Ramalingam, S.; et al. A Novel Alkaline Protease. Indian Patent Number 271983, 2016.
  • Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Enhanced Production of Alkaline Protease by Neocosmospora sp. N1 Using Custard Apple Seed Powder as Inducer and Its Application for Stain Removal and Dehairing. Biocatal. Agric. Biotechnol. 2019, 21, 101310.
  • George, N.; Sondhi, S.; Soni, S. K.; Gupta, N. Lime and Sulphide-Free Dehairing of Animal Skin Using Collagenase-Free Alkaline Protease from Vibrio metschnikovii NG155. Indian J. Microbiol. 2014, 54, 139–142.
  • Hamza, T. A. Bacterial Protease Enzyme: Safe and Good Alternative for Industrial and Commercial Use. Int. J. Chem. Biomol. Sci. 2017, 3, 1–10.
  • Lakshmi, B. K. M.; Hemalatha, K. P. J. Production of Alkaline Protease from Bacillus licheniformis through Statistical Optimization of Growth Media by Response Surface Methodology. Ferment. Technol. 2016, 5, 130–137.
  • Polley, T.; Ghosh, U. Isolation and Identification of Potent Alkaline Protease Producing Microorganism and Optimization of Biosynthesis of the Enzyme Using RSM. Indian Chem. Eng. 2018, 60, 285–296.
  • Hussain, F.; Kamal, S.; Rehman, S.; Azeem, M.; Bibi, I.; Ahmed, T.; Iqbal, H. M. N. Alkaline Protease Production Using Response Surface Methodology, Characterization and Industrial Exploitation of Alkaline Protease of Bacillus subtilis Sp. Catal. Lett. 2017, 147, 1204–1213.
  • Limkar, M. B.; Pawar, S.; V; Rathod, V. K. Statistical Optimization of Xylanase and Alkaline Protease Co-Production by Bacillus sp. Using Box-Behnken Design under Submerged Fermentation Using Wheat Bran as a Substrate. Biocatal. Agric. Biotechnol. 2019, 17, 455–464.
  • Negi, S.; Banerjee, R. Optimization of Amylase and Protease Production from Aspergillus awamori in Single Bioreactor through EVOP Factorial Design Technique. Food Technol. Biotechnol. 2006, 44, 257–261.
  • Boer, C. G.; Peralta, R. M. Production of Extracellular Protease by Aspergillus tamarii. J. Basic Microbiol. 2000, 40, 75–81.
  • Dhandapani, B.; Mahadevan, S.; Muthiah, S. Conversion of Agro by-Products to an Alkaline Protease by Aspergillus tamarii and the Usefulness of Its Metabolic Heat for Better Process Understanding. Waste Biomass Valor. 2020, 11, 2623–2629.
  • Anandan, D.; Marmer, W. N.; Dudley, R. L. Isolation, Characterization and Optimization of Culture Parameters for Production of an Alkaline Protease Isolated from Aspergillus tamarii. J. Ind. Microbiol. Biotechnol. 2007, 34, 339–347. DOI: 10.1007/s10295-006-0201-5.
  • Dhandapani, B.; Mahadevan, S.; Mandal, A. B. Impact of Agitation on Metabolic Heat in Biological Real Time Calorimeter (BioRTCal) and Product Formation of Aspergillus tamarii by Submerged Fermentation. Microbes Appl. Res.: Curr. Adv. Challenges 2012, 663–667. DOI: 10.1142/9789814405041_0134
  • Mehta, V. J.; Thumar, J. T.; Singh, S. P. Production of Alkaline Protease from an Alkaliphilic Actinomycete. Bioresour. Technol. 2006, 97, 1650–1654.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428.
  • Nadeem, F.; Mehmood, T.; Naveed, M.; Shamas, S.; Saman, T.; Anwar, Z. Protease Production from Cheotomium globusum through Central Composite Design Using Agricultural Wastes and Its Immobilization for Industrial Exploitation. Waste Biomass Valor. 2019, 1–11. DOI: 10.1007/s12649-019-00890
  • Asha, B.; Palaniswamy, M. Optimization of Alkaline Protease Production by Bacillus cereus FT 1 Isolated from Soil. J. Appl. Pharm. Sci. 2018, 8, 119–127.
  • Ozdenefe, M. S.; Dincer, S.; Unal, M. U.; Kayis, F. B.; Takci, H. A. M.; Arkut, A. Optimization of Culture Conditions for Alkaline Protease Production from Waste Breads Using Bacillus subtilis. Rom. Biotechnol. Lett. 2017, 22, 12597–12610.
  • Negi, S.; Jain, S.; Raj, A. Combined ANN/EVOP Factorial Design Approach for Media Screening for Cost-Effective Production of Alkaline Proteases from Rhizopus oryzae (SN5)/NCIM-1447 under SSF. AMB Expr. 2020, 10, 1–9.
  • Dhandapani, B.; Vishnu, D.; Murshid, S.; Prasath, R. A.; Muruganandh, R.; Prasanth, D.; Sekar, S.; Senthilkumar, K. Production of Lactic Acid from Industrial Waste Paper Sludge Using Rhizopus oryzae MTCC5384 by Simultaneous Saccharification and Fermentation. Chem. Eng. Commun. 2019, 1–9. DOI: 10.1080/00986445.2019.1657422.
  • Rajendran, A.; Thangavelu, V. Optimization and Modeling of Process Parameters for Lipase Production by Bacillus brevis. Food Bioprocess Technol. 2012, 5, 310–322.
  • Müller, J.; Hütterott, A.; Habicher, T.; Mußmann, N.; Büchs, J. Validation of the Transferability of Membrane-Based Fed-Batch Shake Flask Cultivations to Stirred-Tank Reactor Using Three Different Protease Producing Bacillus Strains. J. Biosci. Bioeng. 2019, 128, 599–605.
  • Habicher, T.; John, A.; Scholl, N.; Daub, A.; Klein, T.; Philip, P.; Büchs, J. Introducing Substrate Limitations to Overcome Catabolite Repression in a Protease Producing Bacillus licheniformis Strain Using Membrane‐Based Fed‐Batch Shake Flasks. Biotechnol. Bioeng. 2019, 116, 1326–1340.
  • Kanekar, P. P.; Nilegaonkar, S. S.; Sarnaik, S. S.; Kelkar, A. S. Optimization of Protease Activity of Alkaliphilic Bacteria Isolated from an Alkaline Lake in India. Bioresour. Technol. 2002, 85, 87–93.
  • Uyar, F.; Baysal, Z. Production and Optimization of Process Parameters for Alkaline Protease Production by a Newly Isolated Bacillus sp. under Solid State Fermentation. Process Biochem. 2004, 39, 1893–1898.
  • Werlang Schuster, F. P.; Maffessoni, C.; Attili de Angelis, D.; Giachini, A. J.; Cardoso, D. H.; Moroni, L. S.; Skoronski, E.; Kempka, A. P. Screening and Evaluation of Filamentous Fungi Potential for Protease Production in Swine Plasma and Red Blood Cells-Based Media: Qualitative and Quantitative Methods. Biocatal. Agric. Biotechnol. 2019, 21, 101313.
  • Nirmal, N. P.; Laxman, R. S. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives. Enzyme Res. 2014, 2014, 109303.
  • Rao, Y. K.; Lu, S.-C.; Liu, B.-L.; Tzeng, Y.-M. Enhanced Production of an Extracellular Protease from Beauveria bassiana by Optimization of Cultivation Processes. Biochem. Eng. J. 2006, 28, 57–66.
  • Kamath, P.; Subrahmanyam, V. M.; Rao, J. V.; Raj, P. V. Optimization of Cultural Conditions for Protease Production by a Fungal Species. Indian J. Pharm. Sci. 2010, 72, 161–166.
  • Wang, L.; Ridgway, D.; Gu, T.; Moo‐Young, M. Effects of Process Parameters on Heterologous Protein Production in Aspergillus niger Fermentation. J. Chem. Technol. Biotechnol. 2003, 78, 1259–1266.
  • Oyeleke, S. B.; Egwim, E. C.; Auta, S. H. Screening of Aspergillus flavus and Aspergillus fumigatus Strains for Extracellular Protease Enzyme Production. J. Microbiol. Antimicrob. 2010, 2, 83–87.
  • Han, S. J.; Park, H.; Kim, S.; Kim, D.; Park, H. J.; Yim, J. H. Enhanced Production of Protease by Pseudoalteromonas arctica PAMC 21717 via Statistical Optimization of Mineral Components and Fed-Batch Fermentation. Prep. Biochem. Biotechnol. 2016, 46, 328–335.
  • Bhargavi, P. L.; Prakasham, R. S. Enhanced Fibrinolytic Protease Production by Serratia marcescens RSPB11 through Plackett-Burman and Response Surface Methodological Approaches. J. Appl. Biol. Biotechnol. 2016, 4, 6–14.
  • Sen, S.; Venkata Dasu, V.; Mandal, B. Medium Development for Enhanced Production of Alkaline Protease from a Newly Isolated Bacillus pseudofirmus SVB1. Asia-Pacific J. Chem. Eng. 2010, 5, 925–931.
  • Sharma, K. M.; Kumar, R.; Panwar, S.; Kumar, A. Microbial Alkaline Proteases: Optimization of Production Parameters and Their Properties. J. Genet. Eng. Biotechnol. 2017, 15, 115–126.
  • Singh, S.; Bajaj, B. K. Agroindustrial/Forestry Residues as Substrates for Production of Thermoactive Alkaline Protease from Bacillus licheniformis K-3 Having Multifaceted Hydrolytic Potential. Waste Biomass Valor. 2017, 8, 453–462.
  • Jang, J. W.; Ko, J. H.; Kim, E. K.; Jang, W. H.; Kang, J. H.; Yoo, O. J. Enhanced Thermal Stability of an Alkaline Protease, AprP, Isolated from a Pseudomonas sp. by Mutation at an Autoproteolysis Site, Ser‐331. Biotechnol. Appl. Biochem. 2001, 34, 81–84.
  • Chu, I.-M.; Lee, C.; Li, T.-S. Production and Degradation of Alkaline Protease in Batch Cultures of Bacillus subtilis ATCC 14416. Enzyme Microb. Technol. 1992, 14, 755–761.
  • Bhunia, B.; Basak, B.; Bhattacharya, P.; Dey, A. Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042. J. Microbiol. Biotechnol. 2012, 22, 1749–1757.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.