202
Views
14
CrossRef citations to date
0
Altmetric
Articles

The response surface optimization of exopolysaccharide produced by Weissella confusa XG-3 and its rheological property

, , , , &

References

  • Imen, T.; Naourez, K.; Sirine, B. S.; Mehdi, T.; Sana, B.; Hela, M.; Riadh, B. S. Evaluation of Dermal Wound Healing Activity and in Vitro Antibacterial and Antioxidant Activities of a New Exopolysaccharide Produced by Lactobacillus sp.Ca6. Int. J. Biol. Macromol. 2017, 103, 194–201.
  • Kansandee, W.; Moonmangmee, D.; Moonmangmee, S.; Itsaranuwat, P. Characterization and Bifidobacterium sp. growth Stimulation of Exopolysaccharide Produced by Enterococcus faecalis EJRM152 Isolated from Human Breast Milk. Carbohydr. Polym. 2019, 206, 102–109. DOI: 10.1016/j.carbpol.2018.10.117.
  • Benhouna, I. S.; Heumann, A.; Rieu, A.; Guzzo, J.; Kihal, M.; Bettache, G.; Champion, D.; Coelho, C.; Weidmann, S. Exopolysaccharide Produced by Weissella confusa: Chemical Characterisation, Rheology and Bioactivity. Int. Dairy J. 2019, 90, 88–94. DOI: 10.1016/j.idairyj.2018.11.006.
  • Yalda, R. S.; Ahmad, Y. K.; Bahram, P. G. A Comprehensive Review of Anticancer, Immunomodulatory and Health Beneficial Effects of the Lactic Acid Bacteria Exopolysaccharides. Carbohyd. Polym. 2019, 217, 79–89.
  • de Oliveira, J. M.; Amaral, S. A.; Burkert, C. A. V. Rheological, Textural and Emulsifying Properties of an Exopolysaccharide Produced by Mesorhizobium loti Grown on a Crude Glycerol-Based Medium. Int. J. Biol. Macromol. 2018, 120, 2180–2187. DOI: 10.1016/j.ijbiomac.2018.06.158.
  • Zhao, F.; Guo, C.; Cui, Q. F.; Hao, Q. Q.; Xiu, J. L.; Han, S. Q.; Zhang, Y. Exopolysaccharide Production by an Indigenous Isolate Pseudomonas stutzeri XP1 and Its Application Potential in Enhanced Oil Recovery. Carbohydr. Polym. 2018, 199, 375–381. DOI: 10.1016/j.carbpol.2018.07.038.
  • Grinev, V. S.; Tregubova, K. V.; Anis’kov, A. A.; Sigida, E. N.; Shirokov, A. A.; Fedonenko, Y. P.; Yegorenkova, I. V. Isolation, Structure, and Potential Biotechnological Applications of the Exopolysaccharide from Paenibacillus polymyxa 92. Carbohydr. Polym. 2020, 232, 115780. DOI: 10.1016/j.carbpol.2019.115780.
  • Xu, Y. M.; Cui, Y. L.; Yue, F. F.; Liu, L. H.; Shan, Y. Y.; Liu, B. F.; Zhou, Y.; Lü, X. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria: Structures, Physiochemical Functions and Applications in the Food Industry. Food Hydrocolloid. 2019, 94, 475–499. DOI: 10.1016/j.foodhyd.2019.03.032.
  • Xing, H. W.; Du, R. P.; Zhao, F. K.; Han, Y.; Xiao, H. Z.; Zhou, Z. J. Optimization, Chain Conformation and Characterization of Exopolysaccharide Isolated from Leuconostoc mesenteroides DRP105. Int. J. Biol. Macromol. 2018, 112, 1208–1216. DOI: 10.1016/j.ijbiomac.2018.02.068.
  • Wang, B.; Song, Q.; Zhao, F.; Zhang, L.; Han, Y.; Zhou, Z. Isolation and Characterization of Dextran Produced by Lactobacillus sakei L3 from Hubei Sausage. Carbohydr. Polym. 2019, 223, 115111. DOI: 10.1016/j.carbpol.2019.115111.
  • Ikeda, S.; Murayama, D.; Tsurumaki, A.; Sato, S.; Urashima, T.; Fukuda, K. Rheological Characteristics and Supramolecular Structure of the Exopolysaccharide Produced by Lactobacillus fermentum MTCC 25067. Carbohydr. Polym. 2019, 218, 226–233. DOI: 10.1016/j.carbpol.2019.04.076.
  • Mahapatra, S.; Banerjee, D. Optimization of a Bioactive Exopolysaccharide Production from Endophytic Fusarium solani SD5. Carbohydr. Polym. 2013, 97, 627–634. DOI: 10.1016/j.carbpol.2013.05.039.
  • Chen, L.; Wang, Z. Q.; Zhang, B.; Ge, M. D.; Ng, H. S.; Niu, Y. G.; Liu, L. M. Production, Structure and Morphology of Exopolysaccharides Yielded by Submerged Fermentation of Antrodia Cinnamomea. Carbohydr. Polym. 2019, 205, 271–278. DOI: 10.1016/j.carbpol.2018.10.070.
  • Ragavan, M. L.; Das, N. Optimization of Exopolysaccharide Production by Probiotic Yeast Lipomyces Starkeyi VIT-MN03 Using Response Surface Methodology and Its Applications. Ann. Microbiol. 2019, 69, 515–530. DOI: 10.1007/s13213-019-1440-9.
  • Deepak, V.; Ram Kumar Pandian, S.; Sivasubramaniam, S. D.; Nellaiah, H.; Sundar, K. Optimization of Anticancer Exopolysaccharide Production from Probiotic Lactobacillus acidophilus by Response Surface Methodology. Prep. Biochem. Biotechnol. 2016, 46, 288–297. DOI: 10.1080/10826068.2015.1031386.
  • Wang, X.; Shao, C.; Liu, L.; Guo, X.; Xu, Y.; Lü, X. Optimization, Partial Characterization and Antioxidant Activity of an Exopolysaccharide from Lactobacillus plantarum KX041. Int. J. Biol. Macromol. 2017, 103, 1173–1184. DOI: 10.1016/j.ijbiomac.2017.05.118.
  • Zhou, Y.; Cui, Y.; Qu, X. Exopolysaccharides of Lactic Acid Bacteria: Structure, Bioactivity and Associations: A Review. Carbohydr. Polym. 2019, 207, 317–332. DOI: 10.1016/j.carbpol.2018.11.093.
  • Li, W.; Mutuvulla, M.; Chen, X.; Jiang, M.; Dong, M. Isolation and Identification of High Viscosity-Producing Lactic Acid Bacteria from a Traditional Fermented Milk in Xinjiang and Its Role in Fermentation Process. Eur. Food Res. Technol. 2012, 235, 497–505. DOI: 10.1007/s00217-012-1779-7.
  • Gentès, M.-C.; Turgeon, S. L.; St-Gelais, D. Impact of Starch and Exopolysaccharide-Producing Lactic Acid Bacteria on the Properties of Set and Stirred Yoghurts. Int. Dairy J. 2016, 55, 79–86. DOI: 10.1016/j.idairyj.2015.12.006.
  • Gentès, M.-C.; St-Gelais, D.; Turgeon, S. L. Gel Formation and Rheological Properties of Fermented Milk with in Situ Exopolysaccharide Production by Lactic Acid Bacteria. Dairy Sci. Technol. 2011, 91, 645–661. DOI: 10.1007/s13594-011-0039-0.
  • Dertli, E.; Toker, O. S.; Durak, M. Z.; Yilmaz, M. T.; Tatlısu, N. B.; Sagdic, O.; Cankurt, H. Development of a Fermented Ice-Cream as Influenced by in Situ Exopolysaccharide Production: Rheological, Molecular, Microstructural and Sensory Characterization. Carbohydr. Polym. 2016, 136, 427–440. DOI: 10.1016/j.carbpol.2015.08.047.
  • Mutamed, A.; Basim, A.-J.; Pariyaporn, I.; Emmanuel, G.; Camila, T.-R.; Hassan, A.; Gennaro, E.; Yamanappa, H.; Reyad, S.; Fathalla, O. H. Characterization, Bioactivities, and Rheological Properties of Exopolysaccharide Produced by Novel Probiotic Lactobacillus plantarum C70 Isolated from Camel Milk. Int. J. Biol. Macromol. 2020, 144, 938–946.
  • Jiang, J.; Guo, S. X.; Zhang, X.; Zhao, D. Isolation and Identification of Exopolysaccharide-Producing Weissella confusa XG-3 and Primary Characterization of Its Exopolysaccharide. J. Nat. Sci. Heilongjiang Univ. 2020, 37, 71–80.
  • DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Zhao, D.; Jiang, J.; Du, R. P.; Guo, S. X.; Ping, W. X.; Ling, H. Z.; Ge, J. P. Purification and Characterization of an Exopolysaccharide from Leuconostoc lactis L2. Int. J. Biol. Macromol. 2019, 139, 1224–1231. DOI: 10.1016/j.ijbiomac.2019.08.114.
  • Zhao, D.; Na, J.; Guo, S. X.; Wang, Y.; Fan, X. X. Optimization of Culture Conditions for Laccase Production by Myrothecium Verrucaria NF-08 via Response Surface Methodology and Performance of the Crude Laccase in Dye Decolorizaion. Acta Scientiae Circumstantiae 2017, 37, 1–8.
  • Du, R. P.; Xing, H. W.; Yang, Y. P.; Jiang, H. J.; Zhou, Z. J.; Ye, H. Optimization, Purification and Structural Characterization of a Dextran Produced by L. mesenteroides Isolated from Chinese Sauerkraut. Carbohydr. Polym. 2017, 174, 409–416. DOI: 10.1016/j.carbpol.2017.06.084.
  • Shraddha, S.; Arun, G. Medium Optimization of Fermentation for Enhanced Dextran Production from Weissella confusa Cab3 by Statistical Methods. Curr. Biotechnol. 2013, 2, 39–46.
  • Hassan, S. W. M.; Ibrahim, H. A. H. Production, Characterization and Valuable Applications of Exopolysaccharides from Marine Bacillus subtilis SH1. Pol. J. Microbiol. 2017, 66, 449–461. DOI: 10.5604/01.3001.0010.7001.
  • Looijesteijn, P. J.; Casteren, W. H. M. V.; Tuinier, R.; Doeswijk-Voragen, C. H. L.; Hugenholtz, J. Influence of Different Substrate Limitations on the Yield, Composition and Molecular Mass of Exopolysaccharides Produced by Lactococcus lactis Subsp. cremoris in Continuous Cultures. J. Appl. Microbiol. 2000, 89, 116–122. DOI: 10.1046/j.1365-2672.2000.01082.x.
  • Adesulu-Dahunsi, A. T.; Sanni, A. I.; Jeyaram, K.; Ojediran, J. O.; Ogunsakin, A. O.; Banwo, K. Extracellular Polysaccharide from Weissella confusa OF126: Production, Optimization, and Characterization. Int. J. Biol. Macromol. 2018, 111, 514–525. DOI: 10.1016/j.ijbiomac.2018.01.060.
  • Wang, M.; Wang, L. Y.; Han, L. R.; Zhang, X.; Feng, J. T. The Effect of Carabrone on Mitochondrial Respiratory Chain Complexes in Gaeumannomyces graminis. J. Appl. Microbiol. 2017, 123, 1100–1110. DOI: 10.1111/jam.13554.
  • Jin, H.; Jeong, Y. J.; Yoo, S. H.; Johnston, T. V.; Ku, S.; Ji, G. E. Isolation and Characterization of High Exopolysaccharide-Producing Weissella confusa VP30 from Young Children’s Feces. Microb. Cell Fact. 2019, 18, 110.
  • Vijayendra, S. V. N.; Babu, R. S. S. Optimization of a New Heteropolysaccharide Production by a Native Isolate of Leuconostoc sp. CFR-2181. Lett. Appl. Microbiol. 2008, 46, 643–648. DOI: 10.1111/j.1472-765X.2008.02361.x.
  • Srinivas, B.; Padma, P. N. Statistical Optimization of Medium Components by Response Surface Methodology for Dextran Production by Weissella confusa. Int. J. Sci. Appl. Res. 2016, 3, 47–57.
  • Wang, J.; Zhao, X.; Tian, Z.; Yang, Y. W.; Yang, Z. N. Characterization of an Exopolysaccharide Produced by Lactobacillus plantarum YW11 Isolated from Tibet Kefir. Carbohydr. Polym. 2015, 125, 16–25. DOI: 10.1016/j.carbpol.2015.03.003.
  • Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Obaid, R.; Kizhakkayil, J.; Liu, S. Q. Physicochemical, Bioactive and Rheological Properties of an Exopolysaccharide Produced by a Probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 2020, 229, 115462. DOI: 10.1016/j.carbpol.2019.115462.
  • Ahmed, Z.; Wang, Y. P.; Nomana, A.; Ahmad, A.; Khan, S. T. Characterization of Exopolysaccharide Produced by Lactobacillus kefiranofaciens ZW3 Isolated from Tibet kefir-Part II. Food Hydrocolloid. 2013, 30, 343–350. DOI: 10.1016/j.foodhyd.2012.06.009.
  • Li, J.; Xu, H. Y.; Chen, X. N.; Xu, L. X.; Cheng, R.; Zhang, J. F.; Wang, S. M. Characterization of an Exopolysaccharide with Distinct Rheological Properties from Paenibacillus edaphicus NUST16. Int. J. Biol. Macromol. 2017, 105, 1–8. DOI: 10.1016/j.ijbiomac.2017.06.030.
  • Xu, Z. Y.; Guo, Q. B.; Zhang, H.; Wu, Y.; Hang, X. M.; Ai, L. Z. Exopolysaccharide Produced by Streptococcus Thermophiles S-3: molecular, Partial Structural and Rheological Properties. Carbohydr. Polym. 2018, 194, 132–138. DOI: 10.1016/j.carbpol.2018.04.014.
  • Chouana, T.; Pierre, G.; Vial, C.; Gardarin, C.; Wadouachi, A.; Cailleu, D.; Le Cerf, D.; Boual, Z.; Ould El Hadj, M. D.; Michaud, P.; et al. Structural Characterization and Rheological Properties of a Galactomannan from Astragalus Gombo Bunge Seeds Harvested in Algerian Sahara. Carbohydr. Polym. 2017, 175, 387–394. DOI: 10.1016/j.carbpol.2017.08.003.
  • Zhang, H.; Nie, S.; Guo, Q.; Wang, Q.; Cui, S. W.; Xie, M. Conformational Properties of a Bioactive Polysaccharide from Ganoderma Atrum by Light Scattering and Molecular Modeling. Food Hydrocolloid. 2018, 84, 16–25. DOI: 10.1016/j.foodhyd.2018.05.023.
  • Bejar, W.; Gabriel, V.; Amari, M.; Morel, S.; Mezghani, M.; Maguin, E.; Fontagné-Faucher, C.; Bejar, S.; Chouayekh, H. Characterization of Glucansucrase and Dextran from Weissella sp. TN610 with Potential as Safe Food Additives. Int. J. Biol. Macromol. 2013, 52, 125–132. DOI: 10.1016/j.ijbiomac.2012.09.014.
  • Ayala-Hernandez, I.; Goff, H. D.; Corredig, M. Interactions between Milk Proteins and Exopolysaccharides Produced by Lactococcus lactis Observed by Scanning Electron Microscopy. J. Dairy Sci. 2008, 91, 2583–2590. DOI: 10.3168/jds.2007-0876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.