179
Views
2
CrossRef citations to date
0
Altmetric
Articles

Enhancing the production of poly-γ-glutamate in Bacillus subtilis ZJS18 by the heat- and osmotic shock and its mechanism

, , , , , & show all

References

  • Kong, S. K.; Kim, T. K.; Graham, N. B. Controlled Release Behavior of Prodrugs Based on the Biodegradable Poly(L-Glutamic Acid) Microspheres. Polym. J. 1999, 31, 813–816. DOI: 10.1295/polymj.31.813.
  • Yoon, S. H.; Do, J. H.; Lee, S. Y.; Chang, H. N. Production of Poly-γ-Glutamic Acid by Fed-Batch Culture of Bacillus licheniformis. Biotechnol. Lett. 2000, 22, 585–588. DOI: 10.1023/A:1005625026623.
  • Hara, T.; Chetanachit, C.; Fujio, Y.; Ueda, S. Distribution of Plasmids in Polyglutamate-Producing Bacillus Strains Isolated from “Natto”-like Fermented Soybeans, “Thua Nao,” in Thailand. J. Gen. Appl. Microbiol. 1986, 32, 241–249. DOI: 10.2323/jgam.32.241.
  • Ezzell, J. W.; Welkos, S. L. The Capsule of Bacillus anthracis, a Review. J. Appl. Microbiol. 1999, 87, 250. DOI: 10.1046/j.1365-2672.1999.00881.x.
  • Melius, P. Structure of Thermal Polymers of Amino Acids. Biosystems. 1982, 15, 275–280. DOI: 10.1016/0303-2647(82)90042-9.
  • Bergey, D. H.; Holt, J. G.; Krieg, N. R. Bergey’s Manual of Systematic Bacteriology. 1984, vol. 38, pp. 89–100.
  • Mitsuiki, M.; Mizuno, A.; Hiroyuki Tanimoto, A.; Motoki, M. Relationship Between the Antifreeze Activities and the Chemical Structures of Oligo- and Poly(Glutamic Acid)s. J. Agric. Food Chem. 1998, 46, 891–895. DOI: 10.1021/jf970797m.
  • Krecz, Á.; Pócsi, I.; Borbély, J. Preparation and Chemical Modification of Poly-γ-L-Glutamic Acid. Folia Microbiol. (Praha). 2001, 46, 183–186. DOI: 10.1007/BF02818530.
  • Luo, H.; Yang, R.; Zhao, Y.; Wang, Z.; Liu, Z.; Huang, M.; Zeng, Q. Recent Advances and Strategies in Process and Strain Engineering for the Production of Butyric Acid by Microbial Fermentation. Bioresource Technol. 2018, 253, 343–354. DOI: 10.1016/j.biortech.2018.01.007.
  • Szczepanek, S.; Cikala, M.; David, C. N. Poly-γ-Glutamate Synthesis During Formation of Nematocyst Capsules in Hydra. J. Cell Sci. 2002, 115, 745–751.
  • Ashiuchi, M.; Yamamoto, T.; Kamei, T. Pivotal Enzyme in Glutamate Metabolism of Poly-g-Glutamate-Producing Microbes. Life (Basel). 2013, 3, 181–188. DOI: 10.3390/life3010181.
  • Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial Synthesis of Poly-γ-Glutamic Acid: Current Progress, Challenges, and Future Perspectives. Biotechnol. Biofuels. 2016, 9, 134. DOI: 10.1186/s13068-016-0537-7.
  • Yu, P.; Huang, X. X.; Zhang, Y. S. Optimization of Culture Conditions for Poly γ-Glutamic Acid Production by Bacillus subtilis ZJS18. Food Sci. 2018, 39, 87–92.
  • Zhang, Y. S. Screening of High Poly-Gamma-Glutamate-Producing Strain and Optimization of Fermentation Conditions. Zhejiang Gongshang University; Hangzhou, 2017; pp. 94.
  • Cheng, X.; Wang, Q.; Zhang, S.; Zhang, W.; He, P.; Fang, Y. Determination of Four Kinds of Carbamate Pesticides by Capillary Zone Electrophoresis with Amperometric Detection at a Polyamide-Modified Carbon Paste Electrode. Talanta. 2007, 71, 1083–1087. DOI: 10.1016/j.talanta.2006.06.001.
  • Hasegawa, T.; Hashimoto, K.; Kawasaki, H.; Nakamatsu, T. Changes in Enzyme Activities at the Pyruvate Node in Glutamate-Overproducing Corynebacterium glutamicum. J. Biosci. Bioeng. 2008, 105, 12–19. DOI: 10.1263/jbb.105.12.
  • Shimizu, H.; Tanaka, H.; Nakato, A.; Nagahisa, K.; Kimura, E.; Shioya, S. Effects of the Changes in Enzyme Activities on Metabolic Flux Redistribution around the 2-Oxoglutarate Branch in Glutamate Production by Corynebacterium glutamicum. Bioprocess Biosyst. Eng. 2003, 25, 291–298. DOI: 10.1007/s00449-002-0307-8.
  • Ding, S. S.; Jia, C. L.; Zhang, L.; Hong, X. U.; Huang, W. N.; Patricia, R. D. Study on the Enhancement of Texture and Sensory Attributes of Frozen Sweet Dough Bread Using γ-Poly Glutamic Acid. Sci. Technol. Food Ind. 2014, 16, 45–57.
  • Weimar, M.; Rothe, G. M. Preparation of Extracts from Mature Spruce Needles for Enzymatic Analyses. Physiol. Plant. 1987, 69, 692–698. DOI: 10.1111/j.1399-3054.1987.tb01986.x.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1006/abio.1976.9999.
  • Bajaj, I. B.; Lele, S. S.; Singhal, R. S. Enhanced Production of Poly (Gamma-Glutamic Acid) from Bacillus licheniformis NCIM 2324 in Solid State Fermentation. J. Ind. Microbiol. Biotechnol. 2008, 35, 1581–1586. DOI: 10.1007/s10295-008-0401-2.
  • Zhang, H.; Zhu, J.; Zhu, X.; Jin, C.; Zhang, A.; Hong, Y.; Jin, H.; Lei, H.; Xu, Z. High-Level Exogenous Glutamic Acid-Independent Production of Poly-(γ-Glutamic Acid) with Organic Acid Addition in a New Isolated Bacillus subtilis C10. Bioresource Technol. 2012, 116, 241–246. DOI: 10.1016/j.biortech.2011.11.085.
  • Kawahara, Y.; Takahashi-Fuke, K.; Shimizu, E.; Nakamatsu, T.; Nakamori, S. Relationship between the Glutamate Production and the Activity of 2-Oxoglutarate Dehydrogenase in Brevibacterium lactofermentum. Biosci. Biotechnol. Biochem. 1997, 61, 1109–1112. DOI: 10.1271/bbb.61.1109.
  • Hara, T.; Ueda, S. Regulation of Poly Glutamate Production in Bacillus subtilis (Natto): Transformation of High PGA Productivity. Agric. Biol. Chem. 1982, 46, 2275–2281.
  • Aboy, M.; Fernandez, J. R.; Hermida, R. C. Analytical Approaches to Poly-γ-Glutamate: Quantification, Molecular Size Determination, and Stereochemistry Investigation. J. Chromatogr. Anal. Technol. Biomed. Life Sci. 2011, 879, 3096–3101.
  • Yeh, C. M.; Wang, J. P.; Lo, S. C.; Chan, W. C.; Lin, M. Y. Chromosomal Integration of a Synthetic Expression Control Sequence Achieves Poly-γ-Glutamate Production in a Bacillus subtilis Strain. Biotechnol. Progr. 2010, 26, 1001–1007.
  • Cao, M.; Geng, W.; Liu, L.; Song, C.; Xie, H.; Guo, W.; Jin, Y.; Wang, S. Glutamic Acid Independent Production of Poly-γ-Glutamic Acid by Bacillus amyloliquefaciens LL3 and Cloning of pgsBCA Genes. Bioresource Technol. 2011, 102, 4251–4257. DOI: 10.1016/j.biortech.2010.12.065.
  • Baichoo, N.; Wang, T.; Ye, R.; Helmann, J. D. Global Analysis of the Bacillus subtilis Fur Regulon and the Iron Starvation Stimulon. Mol. Microbiol. 2002, 45, 1613–1629. DOI: 10.1046/j.1365-2958.2002.03113.x.
  • Hezayen, F. F.; Rehm, B. H.; Eberhardt, R.; Steinbüchel, A. Polymer Production by Two Newly Isolated Extremely Halophilic Archaea: Application of a Novel Corrosion-Resistant Bioreactor. Appl. Microbiol. Biotechnol. 2000, 54, 319–325. DOI: 10.1007/s002530000394.
  • Mukhopadhyay, M.; Patra, A.; Paul, A. Production of Poly (3-Hydroxybutyrate) and Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Rhodopseudomonas palustris SP5212. World J. Microbiol. Biotechnol. 2005, 21, 765–769. DOI: 10.1007/s11274-004-5565-y.
  • Yuan, S. J.; Sun, M.; Sheng, G. P.; Li, Y.; Li, W. W.; Yao, R. S.; Yu, H. Q. Identification of Key Constituents and Structure of the Extracellular Polymeric Substances Excreted by Bacillus megaterium TF10 for Their Flocculation Capacity. Environ. Sci. Technol. 2011, 45, 1152–1157. DOI: 10.1021/es1030905.
  • Mishra, A.; Jha, B. Isolation and Characterization of Extracellular Polymeric Substances from Micro-Algae Dunaliella Salina under Salt Stress. Bioresource Technol. 2009, 100, 3382–3386. DOI: 10.1016/j.biortech.2009.02.006.
  • Parikh, A.; Madamwar, D. Partial Characterization of Extracellular Polysaccharides from Cyanobacteria. Bioresource Technol. 2006, 97, 1822–1827. DOI: 10.1016/j.biortech.2005.09.008.
  • Abbasi, A.; Amiri, S. Emulsifying Behavior of an Exopolysaccharide Produced by Enterobacter cloacae. Afr. J. Biotechnol. 2008, 7, 1574–1576.
  • Peng, Y.; Zhang, T.; Mu, W.; Miao, M.; Jiang, B. Intracellular Synthesis of Glutamic Acid in Bacillus methylotrophicus SK19. 001, a Glutamate-Independent Poly (γ-Glutamic Acid)-Producing Strain. J. Sci. Food Agric. 2016, 96, 66–72. DOI: 10.1002/jsfa.7318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.