277
Views
14
CrossRef citations to date
0
Altmetric
Articles

Optimization of process parameters for improved chitinase activity from Thermomyces sp. by using artificial neural network and genetic algorithm

ORCID Icon, , & ORCID Icon

References

  • Bhattacharya, D.; Nagpure, A.; Gupta, R. K. Bacterial Chitinases: Properties and Potential. Crit. Rev. Biotechnol. 2007, 27, 21–28. DOI: 10.1080/07388550601168223.
  • Sahai, A.; Manocha, M. Chitinases of Fungi and Plants: Their Involvement in Morphogenesis and Host‐Parasite Interaction. FEMS Microbiol. Rev 1993, 11, 317–338. DOI: 10.1111/j.1574-6976.1993.tb00004.x.
  • Oranusi, N. A.; Trinci, A. Growth of Bacteria on Chitin, Fungal Cell Walls and Fungal Biomass, and the Effect of Extracellular Enzymes Produced by These Cultures on the Antifungal Activity of Amphotericin B. Microbios 1985, 43, 17–30.
  • Park, B. K.; Kim, M.-M. Applications of Chitin and Its Derivatives in Biological Medicine. Int. J. Mol. Sci. 2010, 11, 5152–5164. DOI: 10.3390/ijms11125152.
  • Singh, S.; Madlala, A. M.; Prior, B. A. Thermomyces Lanuginosus: Properties of Strains and Their Hemicellulases. FEMS Microbiol. Rev. 2003, 27, 3–16. DOI: 10.1016/S0168-6445(03)00018-4.
  • Kumar, D. P.; Singh, R. K.; Anupama, P.; Solanki, M. K.; Kumar, S.; Srivastava, A. K.; Singhal, P. K.; Arora, D. K. Studies on Exo-Chitinase Production from Trichoderma Asperellum UTP-16 and Its Characterization. Indian J. Microbiol. 2012, 52, 388–395. DOI: 10.1007/s12088-011-0237-8.
  • Dahiya, N.; Tewari, R.; Tiwari, R. P.; Hoondal, G. S. Chitinase Production in Solid-State Fermentation by Enterobacter sp. NRG4 Using Statistical Experimental Design. Curr. Microbiol. 2005, 51, 222–228. DOI: 10.1007/s00284-005-4520-y.
  • Vaidya, R.; Macmil, S.; Vyas, P.; Chhatpar, H. The Novel Method for Isolating Chitinolytic Bacteria and Its Application in Screening for Hyperchitinase Producing Mutant of Alcaligenes Xylosoxydans. Lett. Appl. Microbiol. 2003, 36, 129–134. DOI: 10.1046/j.1472-765x.2003.01274.x.
  • Montgomery, D. Design and Analysis of Experiments, 5th ed.; John Wiley & Sons, Inc.: New York, 2001.
  • Asif, T.; Javed, U.; Zafar, S. B.; Ansari, A.; Qader, S. A. U.; Aman, A. Bioconversion of Colloidal Chitin Using Novel Chitinase from Glutamicibacteruratoxydans Exhibiting anti-Fungal Potential by Hydrolyzing Chitin Withinfungal Cell Wall. Waste Biomassvalorization 2019, 1.
  • (a) Talluri, V. P.; Lanka, S. S.; Saladi, V. R. Statistical Optimization of Process Parameters by Central Composite Design (CCD) for an Enhanced Production of L-Asparaginase by Myroides Gitamensis BSH-3, a Novel Species. Avicenna J. Med. Biotechnol 2019, 11, 59. (b) Kumari, V.; Kumar, V.; Chauhan, R.; Asif, M.; Bhalla, T. C. Optimization of Medium Parameters by Response Surface Methodology (RSM) for Enhanced Production of Cutinase from Aspergillus sp. RL2Ct. 3Biotech 2016, 6, 149. DOI: 10.1007/s13205-016-0460-4.
  • 1 (a) Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, 1989. (b) Goldberg, D. E. Genetic Algorithms. Pearson Education India: New Delhi, 2006. (c) Fogel, D. B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence; John Wiley & Sons: Hoboken, 2006; Vol. 1.
  • (a) Weuster-Botz, D.; Wandrey, C. Medium Optimization by Genetic Algorithm for Continuous Production of Formate Dehydrogenase. Process Biochem. 1995, 30, 563–571. DOI: 10.1016/0032-9592(94)00036-0. (b) Sivapathasekaran, C.; Mukherjee, S.; Ray, A.; Gupta, A.; Sen, R. Artificial Neural Network Modeling and Genetic Algorithm Based Medium Optimization for the Improved Production of Marine Biosurfactant. Bioresour. Technol. 2010, 101, 2884–2887. DOI: 10.1016/j.biortech.2009.09.093. (c) Muffler, K.; Retzlaff, M.; van Pée, K.-H.; Ulber, R. Optimisation of Halogenase Enzyme Activity by Application of a Genetic Algorithm. J. Biotechnol. 2007, 127, 425–433. DOI: 10.1016/j.jbiotec.2006.07.008. (d) Tarafdar, A.; Kaur, B. P.; Nema, P. K.; Babar, O. A.; Kumar, D. Using a Combined Neural Network-Genetic Algorithm Approach for Predicting the Complex Rheological Characteristics of Microfluidized Sugarcane Juice. LWT 2020, 123, 109058. DOI: 10.1016/j.lwt.2020.109058. (e) Salim, N.; Santhiagu, A.; Joji, K. Process Modeling and Optimization of High Yielding L-Methioninase from a Newly Isolated Trichoderma Harzianum Using Response Surface Methodology and Artificial Neural Network Coupled Genetic Algorithm. Biocatal. Agric. Biotechnol 2019, 17, 299–308. DOI: 10.1016/j.bcab.2018.11.032.
  • Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and Artificial Intelligence; University of Michigan Press: Ann Arbor, 1975.
  • Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, 1996.
  • Schmidt, J.; Marques, M. R.; Botti, S.; Marques, M. A. Recent Advances and Applications of Machine Learningin Solid-State Materials Science. NPJ Comput. Mater. 2019, 5, 1.
  • (a) Aounallah, M. A.; Slimene-Debez, I. B.; Djebali, K.; Gharbi, D.; Hammami, M.; Azaiez, S.; Limam, F.; Tabbene, O. Enhancement of Exochitinase Production by Bacillus licheniformis AT6 Strain and Improvement of N-Acetylglucosamine Production. Appl. Biochem. Biotechnol. 2017, 181, 650–666. DOI: 10.1007/s12010-016-2239-9. (b) Arokiyaraj, S.; Varghese, R.; Ahmed, B. A.; Duraipandiyan, V.; Al-Dhabi, N. Optimizing the Fermentation Conditions and Enhanced Production of Keratinase from Bacillus cereus Isolated from Halophilic Environment. Saudi J. Biol. Sci. 2019, 26, 378–381. DOI: 10.1016/j.sjbs.2018.10.011. (c) Das, D.; Selvaraj, R.; Bhat, M. R. Optimization of Inulinase Production by a Newly Isolated Strain Aspergillus flavus Var. flavus by Solid State Fermentation of Saccharum Arundinaceum. Biocatal. Agric. Biotechnol. 2019, 22, 101363. DOI: 10.1016/j.bcab.2019.101363. (d) Kumar, M.; Brar, A.; Vivekanand, V.; Pareek, N. Production of Chitinase from Thermophilic Humicola Grisea and Its Application in Production of Bioactive Chitooligosaccharides. Int. J. Biol. Macromol. 2017, 104, 1641–1647. DOI: 10.1016/j.ijbiomac.2017.04.100. (e) Kumar, M.; Brar, A.; Vivekanand, V.; Pareek, N. Process Optimization, Purification and Characterization of a Novel Acidic, Thermostable Chitinase from Humicola Grisea. Int. J. Biol. Macromol. 2018, 116, 931–938. DOI: 10.1016/j.ijbiomac.2018.05.125. (f) Sahu, S.; Shera, S. S.; Banik, R. M. Optimization of Process Parameters for Cholesterol Oxidase Production by Streptomyces olivaceus MTCC 6820. Tobiotj. 2019, 13, 47–58. DOI: 10.2174/1874070701913010047. (g) Warda, E. A.; Abeer, A.; Eman, R. H.; Mahmoud, A. S.; Ahmed, I. Applications of Plackett–Burman and Central Composite Design for the Optimization of Novel Brevundimonas diminuta KT277492 Chitinase Production, Investigation of Its Antifungal Activity. Braz. Arch. Biol. Technol 2016, 59, e16160245. DOI: 10.1590/1678-4324-2016160245.
  • Holland, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, 1992.
  • Hinton, G. E. How Neural Networks Learn from Experience. Sci. Am. 1992, 267, 144–151. DOI: 10.1038/scientificamerican0992-144.
  • Baskar, G.; Dharmendira Kumar, M.; Anand Prabu, A.; Renganathan, S.; Yoo, C. Optimization of Carbon and Nitrogen Sources for L-Asparaginase Production by Enterobacter aerogenes Using Response Surface Methodology. Chem. Biochem. Eng. Q. 2009, 23, 393–397.
  • Dutta, J. R.; Dutta, P. K.; Banerjee, R. Optimization of Culture Parameters for Extracellular Protease Production from a Newly Isolated Pseudomonas sp. using Response Surface and Artificial Neural Network Models. Process Biochem. 2004, 39, 2193–2198. DOI: 10.1016/j.procbio.2003.11.009.
  • Haider, M.; Pakshirajan, K.; Singh, A.; Chaudhry, S. Artificial Neural Network-Genetic Algorithm Approach to Optimize Media Constituents for Enhancing Lipase Production by a Soil Microorganism. Appl. Biochem. Biotechnol. 2008, 144, 225–235. DOI: 10.1007/s12010-007-8017-y.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Nelofer, R.; Ramanan, R. N.; Rahman, R. N. Z. R. A.; Basri, M.; Ariff, A. B. Comparison of the Estimation Capabilities of Response Surface Methodology and Artificial Neural Network for the Optimization of Recombinant Lipase Production by E. coli BL21. J. Ind. Microbiol. Biotechnol. 2012, 39, 243–254. DOI: 10.1007/s10295-011-1019-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.