155
Views
1
CrossRef citations to date
0
Altmetric
Articles

Pilot scale production of recombinant hemicellulases and their saccharification potential

ORCID Icon, &

References

  • Yang, X.; Xu, M.; Yang, S. T. Metabolic and Process Engineering of Clostridium cellulovorans for Biofuel Production from Cellulose. Metab. Eng. 2015, 32, 39–48. DOI: 10.1016/j.ymben.2015.09.001.
  • Owusu, P. A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990.
  • Deesukon, W.; Nishimura, Y.; Harada, N.; Sakamoto, T.; Sukhumsirichart, W. Purification, Characterization and Gene Cloning of Two Forms of a Thermostable Endo-Xylanase from Streptomyces sp. SWU10. Proc. Biochem. 2011, 46, 2255–2262. DOI: 10.1016/j.procbio.2011.09.004.
  • Morales, P.; Madarro, A.; Pérez-González, J. A.; Sendra, J. M.; Piñaga, F.; Flors, A. Purification and Characterization of Alkaline Xylanases from Bacillus polymyxa. App. Environ. Microbiol. 1993, 59, 1376–1382. DOI: 10.1128/AEM.59.5.1376-1382.1993.
  • Zeng, Y.; Himmel, M. E.; Ding, S.-Y. Visualizing Chemical Functionality in Plant Cell Walls. Biotechnol. Biofuels. 2017, 10, 263DOI: 10.1186/s13068-017-0953-3.
  • Shi, J.; Xu, F.; Wang, Z.; Stiverson, J. A.; Yu, Z.; Li, Y. Effects of Microbial and Non-Microbial Factors of Liquid Anaerobic Digestion Effluent as Inoculum on Solid-State Anaerobic Digestion of Corn Stover. Bioresour. Technol. 2014, 157, 188–196. DOI: 10.1016/j.biortech.2014.01.089.
  • Wipusaree, N.; Sihanonth, P.; Piapukiew, J.; Sangvanich, P.; Karnchanatat, A. Purification and Characterization of a Xylanase from the Endophytic Fungus Alternaria alternata Isolated from the Thai Medicinal Plant, Croton Oblongifolius Roxb. Afr. J. Microbiol. Res. 2011, 5, 5697–5712.
  • van den Brink, J.; de Vries, R. P. Fungal Enzyme Sets for Plant Polysaccharide Degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. DOI: 10.1007/s00253-011-3473-2.
  • Magalhães da Silva, S. P.; da Costa Lopes, A. M.; Roseiro, L. B.; Bogel-Łukasik, R. Novel Pre-Treatment and Fractionation Method for Lignocellulosic Biomass Using Ionic Liquids. RSC Adv. 2013, 3, 16040–16050. DOI: 10.1039/c3ra43091j.
  • Cosgrove, D. J. Relaxation in a High-Stress Environment: The Molecular Bases of Extensible Cell Walls and Cell Enlargement. Plant Cell 1997, 9, 1031–1041. DOI: 10.1105/tpc.9.7.1031.
  • Coughlan, M.; Hazlewood, G. P. Beta‐1, 4‐D‐Xylan‐Degrading Enzyme Systems: Biochemistry, Molecular Biology and Applications. Biotechnol. Appl. Biochem. 1993, 17, 259–289.
  • Kulkarni, N.; Shendye, A.; Rao, M. Molecular and Biotechnological Aspects of xylanases. FEMS Microbiol. Rev. 1999, 23, 411–456. DOI: 10.1111/j.1574-6976.1999.tb00407.x.
  • Voelker, S. L.; Lachenbruch, B.; Meinzer, F. C.; Jourdes, M.; Ki, C.; Patten, A. M.; Davin, L. B.; Lewis, N. G.; Tuskan, G. A.; Gunter, L.; et al. Antisense Down-Regulation of 4CL Expression Alters Lignification, Tree Growth and Saccharification Potential of Field-Grown Poplar. Plant Physiol. 2010, 154, 874–159269. DOI: 10.1104/pp.110.159269.
  • Bhardwaj, N.; Kumar, B.; Verma, P. A Detailed Overview of Xylanases: An Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioproc. 2019, 6, 40.
  • Saha, B. C. Hemicellulose Bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. DOI: 10.1007/s10295-003-0049-x.
  • Roy, N.; Habib, M. R. Isolation and Characterization of Xylanase Producing Strain of Bacillus cereus from Soil. Iranian J. Microbiol. 2009, 1, 49–53.
  • Smith, B. G.; Harris, P. J. The Polysaccharide Composition of Poales Cell Walls: Poaceae Cell Walls Are Not Unique. Biochemic. Systemat. Ecol. 1999, 27, 33–53. DOI: 10.1016/S0305-1978(98)00068-4.
  • Puls, J. Chemistry of Hemicelluloses: Relationship between Hemicellulose Structure and Enzymes Required for Hydrolysis. Hemicellulose Hemicellulose 1993, 120, 183–196.
  • Willfor, S.; Sundberg, A.; Pranovich, A.; Holmbom, B. Polysaccharides in Some Industrially Important Hardwood Species. Wood Sci. Technol. 2005, 39, 601–617. DOI: 10.1007/s00226-005-0039-4.
  • de Barros, R. d R. O.; de Sousa Paredes, R.; Endo, T.; da Silva Bon, E. P.; Lee, S. H. Association of Wet Disk Milling and Ozonolysis as Pretreatment for Enzymatic Saccharification of Sugarcane Bagasse and Straw. Bioresour. Technol. 2013, 136, 288–294. DOI: 10.1016/j.biortech.2013.03.009.
  • Motaung, T.; Anandjiwala, R. Effect of Alkali and Acid Treatment on Thermal Degradation Kinetics of Sugar Cane Bagasse. Ind. Crop. Pro. 2015, 74, 472–477. DOI: 10.1016/j.indcrop.2015.05.062.
  • Roheena, A.; Mohsin, J. Optimization of Cultural Conditions for the Production of Alpha Amylase by Wild and Mutant Strain of Aspergillus oryzae in Stirred Fermenter. Pak. J. Bot. 2011, 43, 715–723.
  • Rahulan, R.; Dhar, K. S.; Nampoothiri, K. M.; Pandey, A. Production of Leucine Amino Peptidase in Lab Scale Bioreactors Using Streptomyces gedanensis. Biores. Technol. 2011, 102, 8171–8178. DOI: 10.1016/j.biortech.2011.06.037.
  • Gao, W.; Kim, Y. J.; Chung, C. H.; Li, J.; Lee, J. W. Pilot-Scale Optimization of Parameters Related to Dissolved Oxygen for Mass Production of Pullulan by Aureobasidium pullulans HP-2001. J. Life Sci. 2010, 20, 1433–1442. DOI: 10.5352/JLS.2010.20.10.1433.
  • Gigras, P.; Sahai, V.; Gupta, R. Statistical Media Optimization and Production of ITS Alpha-amylase from Aspergillus oryzae in a Bioreactor. Curr. Microbiol. 2002, 45, 203–208. DOI: 10.1007/s00284-001-0107-4.
  • Kronstad, J.; Schnepf, H.; Whiteley, H. Diversity of Locations for Bacillus thuringiensis Crystal Protein Genes. J. Bacteriol. 1983, 154, 419–428. DOI: 10.1128/JB.154.1.419-428.1983.
  • Laemmli, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. DOI: 10.1038/227680a0.
  • Miller, G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • de Oliveira Rodrigues, P.; dos Santos, B. V.; Costa, L.; Henrique, M. A.; Pasquini, D.; Baffi, M. A. Xylanase and β-Glucosidase Production by Aspergillus fumigatus Using Commercial and Lignocellulosic Substrates Submitted to Chemical Pre-Treatments. Ind. Crops Prod. 2017, 95, 453–459. DOI: 10.1016/j.indcrop.2016.10.055.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1006/abio.1976.9999.
  • Waśko, A.; Kieliszek, M.; Targoński, Z. Purification and Characterization of a Proteinase from the Probiotic Lactobacillus rhamnosus OXY. Preparative Biochem. Biotechnol. 2012, 42, 476–488. DOI: 10.1080/10826068.2012.656869.
  • Hoşgün, E. Z.; Berikten, D.; Kıvanç, M.; Bozan, B. Ethanol Production from Hazelnut Shells through Enzymatic Saccharification and Fermentation by Low-Temperature Alkali Pretreatment. Fuel 2017, 196, 280–287. DOI: 10.1016/j.fuel.2017.01.114.
  • Birnboim, H. C.; Doly, J. A Rapid Alkaline Extraction Procedure for Screening Recombinant Plasmid DNA. Nucleic Acids Res. 1979, 7, 1513–1523. DOI: 10.1093/nar/7.6.1513.
  • Sweeney, M. D.; Xu, F. Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalyst 2012, 2, 244–263. DOI: 10.3390/catal2020244.
  • Amin, F. R.; Khalid, H.; Zhang, H.; u Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment Methods of Lignocellulosic Biomass for Anaerobic Digestion. AMB Express 2017, 7, 72DOI: 10.1186/s13568-017-0375-4.
  • Kumar, R.; Banoth, L.; Banerjee, U. C.; Kaur, J. Enantiomeric Separation of Pharmaceutically Important Drug Intermediates Using a Metagenomic Lipase and Optimization of Its Large Scale production. Int. J. Biol. Macromol. 2017, 95, 995–1003. DOI: 10.1016/j.ijbiomac.2016.10.088.
  • Dey, A.; Bhunia, B.; Dutta, S. Studies on the Effect of Agitation and Aeration for the Improved Protease Production by Bacillus licheniformis NCIM-2042. Mater. Today: Proc. 2016, 3, 3444–3449. DOI: 10.1016/j.matpr.2016.10.026.
  • Nadeem, M.; Qazi, J. I.; Baig, S. Effect of Aeration and Agitation Rates on Alkaline Protease Production by Bacillus licheniformis UV-9 Mutant. Turk. J. Biochem. 2009, 34, 89–96.
  • Abdella, A.; Segato, F.; Wilkins, M. R. Optimization of Process Parameters and Fermentation Strategy for Xylanase Production in a Stirred Tank Reactor Using a Mutant Aspergillus nidulans Strain. Biotechnol. Rep. 2020, 26, e00457. DOI: 10.1016/j.btre.2020.e00457.
  • Lee, N. K. Statistical Optimization of Medium and Fermentation Conditions of Recombinant Pichia pastoris for the Production of Xylanase. Biotechnol. Bioproc. E 2018, 23, 55–63. DOI: 10.1007/s12257-017-0262-5.
  • Kumar, S.; Sharma, N.; Pathania, S. Optimization of Process Parameters and Scale-Up of Xylanase Production from Bacillus amyloliquifaciens Sh8 in a Stirred Tank Bioreactor. Cellulo. Chem. Technol. 2017, 51, 403–415.
  • Wijaya, H.; Thontowi, A.; Yopi, Y. Optimization Production of Xylanase by Bacillus pumilus in Empty Fruit Bunch Using 3L Bioreactor. Teknologi Indo. 2017, 40, 20–30.
  • Reddy, V.; Reddy, P.; Pillay, B.; Singh, S. Effect of Aeration on the Production of Hemicellulases by T. lanuginosus SSBP in a 30 l Bioreactor. Proc. Biochem. 2002, 37, 1221–1228. DOI: 10.1016/S0032-9592(02)00004-3.
  • Chisti, Y.; Shear Sensitivity. In Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, Vol. 7; Flickinger, M. C.; Wiley: New York, 2010; pp 4360–4398.
  • Giuseppin, M. L. F. Effects of Dissolved Oxygen Concentration on Lipase Production by Rhizopus delemar. Appl. Microbiol. Biotechnol. 1984, 20, 161–165. DOI: 10.1007/BF00253724.
  • Kim, S.; Hwang, H.; Xu, C.; Choi, J.; Yun, J. Effect of Aeration and Agitation on the Production of Mycelial Biomass and Exopolysaccharides in an Enthomopathogenic Fungus Paecilomyces sinclairii. Lett. Appl. Microbiol. 2003, 36, 321–326. DOI: 10.1046/j.1472-765X.2003.01318.x.
  • Mantzouridou, F.; Roukas, T.; Kotzekidou, P. Effect of the Aeration Rate and Agitation Speed on β-Carotene Production and Morphology of Blakeslea trispora in a Stirred Tank Reactor: Mathematical Modeling. Biochemic. Eng. J. 2002, 10, 123–135. DOI: 10.1016/S1369-703X(01)00166-8.
  • Hoq, M. M.; Hempel, C.; Deckwer, W.-D. Cellulase-Free Xylanase by Thermomyces lanuginosus RT9: Effect of Agitation, Aeration, and Medium Components on Production. J. Biotechnol. 1994, 37, 49–58. DOI: 10.1016/0168-1656(94)90202-X.
  • Bakri, Y.; Mekaeel, A.; Koreih, A. Influence of Agitation Speeds and Aeration Rates on the Xylanase Activity of Aspergillus niger SS7. Braz. Arch. Biol. Technol. 2011, 54, 659–664. DOI: 10.1590/S1516-89132011000400003.
  • Helianti, I.; Ulfah, M.; Nurhayati, N.; Suhendar, D.; Finalissari, A. K.; Ardani, A. K. Production of Xylanase by Recombinant Bacillus subtilis DB104 Cultivated in Agroindustrial Waste Medium. HAYATI J. Biosci. 2016, 23, 125–131. DOI: 10.1016/j.hjb.2016.07.002.
  • Zhou, Y.; Han, L. R.; He, H. W.; Sang, B.; Yu, D. L.; Feng, J. T.; Zhang, X. Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-up Based on Volumetric Oxygen Transfer Coefficient. Molecules 2018, 23, 125. DOI: 10.3390/molecules23010125.
  • Garcia-Ochoa, F.; Gomez, E.; Santos, V. E.; Merchuk, J. C. Oxygen Uptake Rate in Microbial Processes: An Overview. Biochemic. Eng. J. 2010, 49, 289–307. DOI: 10.1016/j.bej.2010.01.011.
  • Hwang, B. K.; Lee, W. N.; Yeon, K. M.; Park, P. K.; Lee, C. H.; Chang, iS.; Drews, A.; Kraume, M. Correlating TMP Increases with Microbial Characteristics in the Bio-Cake on the Membrane Surface in a Membrane Bioreactor. Environ. Sci. Technol. 2008, 42, 3963–3968. DOI: 10.1021/es7029784.
  • Oosterhuis, N.; Kossen, N. Dissolved Oxygen Concentration Profiles in a Production-Scale Bioreactor. Biotechnol. Bioeng. 1984, 26, 546–550. DOI: 10.1002/bit.260260522.
  • Konz, J. O.; King, J.; Cooney, C. L. Effects of Oxygen on Recombinant Protein Expression. Biotechnol. Prog. 1998, 14, 393–409. DOI: 10.1021/bp980021l.
  • Korshunov, S.; Imlay, J. A. Detection and Quantification of Superoxide Formed within the Periplasm of Escherichia coli. J. Bacteriol. 2006, 188, 6326–6334. DOI: 10.1128/JB.00554-06.
  • Imlay, J. A. Cellular Defenses against Superoxide and Hydrogen Peroxide. Annu. Rev. Biochem. 2008, 77, 755–776. DOI: 10.1146/annurev.biochem.77.061606.161055.
  • Messner, K. R.; Imlay, J. A. The Identification of Primary Sites of Superoxide and Hydrogen Peroxide Formation in the Aerobic Respiratory Chain and Sulfite Reductase Complex of Escherichia coli. J. Biol. Chem. 1999, 274, 10119–10128. DOI: 10.1074/jbc.274.15.10119.
  • Moteshafi, H.; Mousavi, S. M.; Hashemi, M. Enhancement of Xylanase Productivity Using Industrial By-Products under Solid Suspended Fermentation in a Stirred Tank Bioreactor, with a Dissolved Oxygen Constant Control Strategy. RSC Adv. 2016, 6, 35559–35567. DOI: 10.1039/C6RA01449F.
  • Basar, B.; Mohd-Shamzi, M.; Rosfarizan, M.; Puspaningsih, N.; Ariff, A. Enhanced Production of Thermophilic Xylanase by Recombinant Escherichia coli DH5α through Optimization of Medium and Dissolved Oxygen Level. Int. J. Agri. Bio. 2010, 12, 321–328.
  • Mukhtar, H.; Umber, H. Fermentation Medium Optimization for the Biosynthesis of Protease by Penicillium chrysogenum in Shake Flasks. Pak. J. Zool. 2008, 40, 69–73.
  • Lin, L. L.; Hsu, W. H. Lactose-Induced Expression of Bacillus sp. TS‐23 Amylase Gene in Escherichia coli Regulated by a T7 Promoter. Lett. Appl. Microbiol. 1997, 24, 365–368. DOI: 10.1046/j.1472-765X.1997.00146.x.
  • Lonsane, B.; Saucedo-Castaneda, G.; Raimbault, M.; Roussos, S.; Viniegra-Gonzalez, G.; Ghildyal, N.; Ramakrishna, M.; Krishnaiah, M. Scale-up Strategies for Solid State Fermentation Systems. Proc. Biochem. 1992, 27, 259–273. DOI: 10.1016/0032-9592(92)85011-P.
  • Shafee, N.; Aris, S. N.; Rahman, R.; Basri, M.; Salleh, A. B. Optimization of Environmental and Nutritional Conditions for the Production of Alkaline Protease by a Newly Isolated Bacterium Bacillus cereus Strain 146. J. Appl. Sci. Res. 2005, 1, 1–8.
  • Irfan, M.; Asghar, U.; Nadeem, M.; Nelofer, R.; Syed, Q. Optimization of Process Parameters for Xylanase Production by Bacillus sp. in Submerged Fermentation. J. Radi. Res. Appl. Sci. 2016, 9, 139–147. DOI: 10.1016/j.jrras.2015.10.008.
  • Anjum, B.; Snehal, I. Xylanase Production by Bacillus pumilus AB-1 under Solid State Fermentation and Its Application. Bull. Environ. Sci. Res. 2012, 1, 35–43.
  • Breccia, J. D.; Siñeriz, F.; Baigori, M. D.; Castro, G. R.; Hatti-Kaul, R. Purification and Characterization of a Thermostable Xylanase from Bacillus amyloliquefaciens. Enzym. Microb. Technol. 1998, 22, 42–49. DOI: 10.1016/S0141-0229(97)00102-6.
  • Kamble, R. D.; Jadhav, A. R. Isolation, Purification, and Characterization of Xylanase Produced by a New Species of Bacillus in Solid State Fermentation. Int. J. Microbiol. 2012, 2012, 683193. DOI: 10.1155/2012/683193.
  • Knob, A.; Beitel, S. M.; Fortkamp, D.; Terrasan, C. R. F.; Almeida, A. F. D. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer’s Spent Grain as Substrate. BioMed Res. Int. 2013, 2013, 1–8. DOI: 10.1155/2013/728735.
  • Boyce, A.; Walsh, G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger Van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl. Biochem. Biotechnol. 2018, 186, 712–730. DOI: 10.1007/s12010-018-2761-z.
  • Mhetras, N.; Liddell, S.; Gokhale, D. Purification and Characterization of an Extracellular β-Xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an Unexplored Yeast. AMB Express 2016, 6, 73DOI: 10.1186/s13568-016-0243-7.
  • Raza, A.; Bashir, S.; Tabassum, R. Statistical Based Experimental Optimization for Co-production of Endo-glucanase and Xylanase from Bacillus sonorensis BD92 with Their Application in Biomass Saccharification. Folia Microbiol. (Praha) 2019, 64, 295–305. DOI: 10.1007/s12223-018-0654-8.
  • Ahmed, A. A. Q.; Babalola, O. O.; McKay, T. Cellulase and Xylanase-Producing Bacterial Isolates with the Ability to Saccharify Wheat Straw and Their Potential Use in the Production of Pharmaceuticals and Chemicals from Lignocellulosic Materials. Waste Biomass Valor. 2018, 9, 765–775. DOI: 10.1007/s12649-017-9849-5.
  • Premalatha, N.; Gopal, N. O.; Jose, P. A.; Anandham, R.; Kwon, S. W.; Optimization of Cellulase Production by Enhydrobacter sp. ACCA2 and Its Application in Biomass Saccharification. Frontiers Microbiol. 2015, 6, 1046.
  • Akhtar, M. S.; Saleem, M.; Akhtar, M. W. Saccharification of Lignocellulosic Materials by the Cellulases of Bacillus subtilis. Int. J. Agr. Biol. 2001, 3, 199–202.
  • Karmakar, M.; Ray, R. R. Saccharification of Agro Wastes by the Endoglucanase of Rhizopus oryzae. Ann. Biol. Res. 2011, 2, 201–208.
  • Alrumman, S. A. Enzymatic Saccharification and Fermentation of Cellulosic Date Palm Wastes to Glucose and Lactic Acid. Brazilian J. Microbiol. 2016, 47, 110–119. DOI: 10.1016/j.bjm.2015.11.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.