591
Views
17
CrossRef citations to date
0
Altmetric
Articles

Zinc oxide nanoparticles inhibit bacterial biofilm formation via altering cell membrane permeability

, , &

References

  • Cortes, M. E.; Jessika, C. B.; Ruben, D. S. Biofilm Formation, Control and Novel Strategies for Eradication. In Science against microbial pathogens: communicating current research and technological advances. Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; pp. 896–905.
  • Srey, S.; Jahid, I. K.; Ha, S. D. Biofilm Formation in Food Industries: A Food Safety Concern. Food Control. 2013, 31, 572–585.
  • Qian, P. Y.; Lau, S. C.; Dahms, H. U.; Dobretsov, S.; Harder, T. Marine Biofilms as Mediators of Colonization by Marine Macroorganisms: Implications for Antifouling and Aquaculture. Mar. Biotechnol. 2007, 9, 399–410.
  • Bryers, J. D. Medical Biofilms. Biotechnol. Bioeng. 2008, 100, 1–18.
  • Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Hoiby, N. Applying Insights from Biofilm Biology to Drug Development—Can a New Approach Be Developed? Nat. Rev. Drug Discov. 2013, 12, 791–808.
  • Raihana, A. K. M. P.; Ranjitha, K.; Rishad, P.; Sabeela, P. P.; Prasobh, G. R.; Shrikumar, S. Importance of Nanotechnology in Pharmaceutical Formulations-A Review. IJRDO J. Health Sci. Nurs. 2017, 2, 1–13.
  • Santhoshkumar, J.; Kumar, S. V.; Rajeshkumar, S. Synthesis of Zinc Oxide Nanoparticles Using Plant Leaf Extract against Urinary Tract Infection Pathogen. Resour. Effic. Technol. 2017, 3, 459–465.
  • Agarwal, H.; Kumar, S. V.; Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles–an Eco-Friendly Approach. Resour. Effic. Technol. 2017, 3, 406–413.
  • Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperumal, S. Formulation of Carica Papaya Latex-Functionalized Silver Nanoparticles for Its Improved Antibacterial and Anticancer Applications. J. Mol. Liq. 2016, 219, 232–238.
  • Agarwal, A.; Mehra, A.; Karthik, L.; Kumar, G.; Rao, K. V. B. Antibiofouling Property of Marine Actinobacteria and Its Mediated Nanoparticle. IJNP. 2014, 7, 294–306.
  • Kumar, D.; Karthik, L.; Kumar, G.; Rao, K. V. B. Biosynthesis of Silver Nanoparticles from Marine Yeast and Their Antimicrobial Activity against Multidrug Resistant Pathogens. Pharmacologyonline. 2011, 3, 1100–1111.
  • Naveen, K. S. H.; Kumar, G.; Karthik, L.; Rao, K. V. B. Extracellular Biosynthesis of Silver Nanoparticles Using the Filamentous Fungus Penicillium sp. Arch. Appl. Sci. Res. 2010, 2, 161–167.
  • Ravichandran, S.; Paluri, V.; Kumar, G.; Loganathan, K.; Rao, K. V. B. A Novel Approach for the Biosynthesis of Silver Oxide Nanoparticles Using Aqueous Leaf Extract of Callistemon Lanceolatus (Myrtaceae) and Their Therapeutic Potential. J. Exp. Nanosci. 2016, 11, 445–458.
  • Sanaeimehr, Z.; Javadi, I.; Namvar, F. Antiangiogenic and Antiapoptotic Effects of Green-Synthesized Zinc Oxide Nanoparticles Using Sargassum Muticum Algae Extraction. Cancer Nanotechnol. 2018, 9, 3.
  • Yusof, H. M.; Mohamad, R.; Zaidan, U. H.; Rahman, N. A. A. Microbial Synthesis of Zinc Oxide Nanoparticles and Their Potential Application as an Antimicrobial Agent and a Feed Supplement in Animal Industry: A Review. J. Anim. Sci. Biotechnol. 2019, 10, 57.
  • Bhowmik, D.; Bhattacharjee, C.; Kumar, K. P. S. A Potential Medicinal Importance of Zinc in Human Health and Chronic Disease. Int. J. Pharm. Biomed. Sci. 2010, 1, 5–11.
  • Swain, P. S.; Rao, S. B. N.; Rajendran, D.; Dominic, G.; Selvaraju, S. Nano Zinc, an Alternative to Conventional Zinc as Animal Feed Supplement: A Review. Anim. Nutr. 2016, 2, 134–141.
  • Uikey, P.; Vishwakarma, K. Review of Zinc Oxide (ZnO) Nanoparticles Applications and Properties. Int. J. Emerg. Technol. Comput. Sci. Elect. 2016, 21, 239–242.
  • Ozgur, U.; Hofstetter, D.; Morkoc, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE. 2010, 98, 1255–1268.
  • FDA (Food and Drug Administration). Select Committee on GRAS Substances (SCOGS) Opinion: Zinc Salts. Washington DC, USA, 2015. Available at: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm261041.html.
  • Pulit-Prociak, J.; Chwastowski, J.; Kucharski, A.; Banach, M. Applied Surface Science Functionalization of Textiles with Silver and Zinc Oxide Nanoparticles. Appl. Surf. Sci. 2016, 385, 543–553.
  • Kasraei, S.; Sami, L.; Hendi, S.; Alikhani, M. Y.; Rezaei-Soufi, L.; Khamverdi, Z. Antibacterial Properties of Composite Resins Incorporating Silver and Zinc Oxide Nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod. 2014, 39, 109–114.
  • Siddique, S.; Shah, Z. H.; Shahid, S.; Yasmin, F. Preparation, Characterization and Antibacterial Activity of ZnO Nanoparticles on Broad Spectrum of Microorganisms. Acta Chim. Slov. 2013, 60, 660–665.
  • Swain, P.; Nayak, S. K.; Sasmal, A.; Behera, T.; Barik, S. K.; Swain, S. K.; Mishra, S. S.; Sen, A. K.; Das, J. K.; Jayasankar, P. Antimicrobial Activity of Metal Based Nanoparticles against Microbes Associated with Diseases in Aquaculture. World J. Microbiol. Biotechnol. 2014, 30, 2491–2502.
  • Al-Fori, M.; Dobretsov, S.; Myint, M. T. Z.; Dutta, J. Antifouling Properties of Zinc Oxide Nanorod Coatings. Biofouling. 2014, 30, 871–882.
  • Hussain, A.; Oves, M.; Alajmi, M. F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M. T.; El-Seedi, H. R.; Ali, I. Biogenesis of ZnO Nanoparticles Using Pandanus Odorifer Leaf Extract: Anticancer and Antimicrobial Activities. RSC Adv. 2019, 9, 15357–15369.
  • Khan, S. T.; Ahamed, M.; Musarrat, J.; Al-Khedhairy, A. A. Anti-Biofilm and Antibacterial Activities of Zinc Oxide Nanoparticles against the Oral Opportunistic Pathogens Rothia dentocariosa and Rothia mucilaginosa. Eur. J. Oral Sci. 2014, 122, 397–403.
  • Lee, J. H.; Kim, Y. G.; Cho, M. H.; Lee, J. ZnO Nanoparticles Inhibit Pseudomonas aeruginosa Biofilm Formation and Virulence Factor Production. Microbiol. Res. 2014, 169, 888–896.
  • Dasaroju, S.; Gottumukkala, K. M. Current Trends in the Research of Emblica Officinalis (Amla): A Pharmacological Perspective. Int. J. Pharm. Sci. Rev. Res. 2014, 24, 150–159.
  • Lanka, S. A Review on Pharmacological, Medicinal and Ethnobotanical Important Plant: Phyllanthus Emblica Linn. (Syn. Emblica Officinalis). World J. Pharm. Res. 2018, 7, 380–396.
  • Senthilkumar, S. R.; Thirumal, S. Green Tea (Camellia Sinensis) Mediated Synthesis of Zinc Oxide (ZnO) Nanoparticles and Studies on Their Antimicrobial Activities. Int. J. Pharm. Pharm. Sci. 2014, 6, 461–465.
  • CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. Available at: https://clsi.org/standards/products/microbiology/documents/m100/.
  • Tagg, J. R.; Dajani, A. S.; Wannamaker, L. W. Bacteriocins of Gram-Positive Bacteria. Bacteriol. Rev. 1976, 40, 722–756.
  • Kumar, G.; Karthik, L.; Rao, K. V. B. Antibacterial Activity of Aqueous Extract of Calotropis Gigantea Leaves–an in Vitro Study. Int. J. Pharm. Sci. Rev. Res. 2010, 4, 141–144.
  • Okunji, C. O.; Okeke, C. N.; Gugnani, H. C.; Iwu, M. M. An Antifungal Spirostanol Saponin from Fruit Pulp of Dracaena Mannii. Int. J. Crude Drug Res. 1990, 28, 193–199.
  • Hsueh, Y.-H.; Lin, K.-S.; Ke, W.-J.; Hsieh, C.-T.; Chiang, C.-L.; Tzou, D.-Y.; Liu, S.-T. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions. PLOS One. 2015, 10, e0144306.
  • Garg, G.; Sharma, S.; Dua, A.; Mahajan, R. Antibacterial Potential of Polyphenol Rich Methanol Extract of Cardamom (Amomum Subulatum). J. Innovat. Bio. 2016, 3, 271–275.
  • Patil, R. C.; Talekar, D. A. Method of Precipitation of ZnO Nanoparticles by Co-Precipitation Method Using Black Tiger Prawns (Panaeus monodon) Extract. Indian Patent Pending No. 2422/MUM/2013, 2013.
  • Ramesh, P.; Rajendran, A.; Meenakshisundaram, M. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract Cassia Auriculata. J. Nanosci. Nanotechnol. 2014, 2, 41–45.
  • Singh, R. P.; Shukla, V. K.; Yadav, R. S.; Sharma, P. K.; Singh, P. K.; Pandey, A. C. Biological Approach of Zinc Oxide Nanoparticles Formation and Its Characterization. AML. 2011, 2, 313–317.
  • Zhang, D. H.; Xue, Z. Y.; Wang, Q. P. The Blue Photoluminescence Emitted from ZnO Films Deposited on Glass Substrate by RF Magnetron Sputtering. J. Phys. D: Appl. Phys. 2002, 35, 2837–2840.
  • Djaja, N. F.; Montja, D. A.; Saleh, R. The Effect of Co Incorporation into ZnO Nanoparticles. AMPC. 2013, 03, 33–41.
  • Bindu, P.; Thomas, S. Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis. J. Theor. Appl. Phys. 2014, 8, 123–134.
  • Al Abdullah, K.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO Nanopowders by Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia. 2017, 119, 557–565.
  • Muhammad, W.; Naimat Ullah, S.; Haroon, M.; Abbasi, B. H. Optical, Morphological and Biological Analysis of Zinc Oxide Nanoparticles (ZnO NPs) Using Papaver Somniferum L. RSC Adv. 2019, 9, 29541–29548.
  • Devi, R. S.; Gayathri, R. Green Synthesis of Zinc Oxide Nanoparticles by Using Hibiscus Rosa-Sinensis. Int. J. Curr. Eng. Technol. 2014, 4, 2444–2446.
  • Gnanasangeetha, D.; Thambavani, D. S. One Pot Synthesis of Zinc Oxide Nanoparticles via Chemical and Green Method. Res. J. Mater. Sci. 2013, 1, 1–8.
  • Hiremath, S.; Chandraprabha, M. N.; Antonyraj, M. A. L.; Gopal, I. V.; Jain, A.; Bansal, K. Green Synthesis of ZnO Nanoparticles by Calotropis Gigantea. International Journal of Current Engineering and Technology 2013, 1, 118–120.
  • Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): the Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41, 8484–8490.
  • Xia, W. J.; Onyuksel, H. Mechanistic Studies on Surfactant Induced Membrane Permeability Enhancement. Pharm. Res 2000, 17, 612–618.
  • Sayed, S. R. M.; Bahkali, A. H.; Bakri, M. M.; Hirad, A. H.; Elgorban, A. M.; El-Metwally, M. A. Antibacterial Activity of Biogenic Silver Nanoparticles Produced by Aspergillus terreus. Int. J. Pharmacol. 2015, 11, 858–863.
  • Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A Facile Method to Prepare Size-Tunable Silver Nanoparticles and Its Antibacterial Mechanism. Adv. Powder Technol. 2018, 29, 407–415.
  • Ni, Z.; Gu, X.; He, Y.; Wang, Z.; Zou, X.; Zhao, Y.; Sun, L. Synthesis of Silver Nanoparticle-Decorated Hydroxyapatite (HA@Ag) Poriferous Nanocomposites and the Study of Their Antibacterial Activities. RSC Adv. 2018, 8, 41722–41730.
  • Senthilkumar, S.; Kashinath, L.; Ashok, M.; Rajendran, A. Antibacterial Properties and Mechanism of Gold Nanoparticles Obtained from Pergularia Daemia Leaf Extract. JNMR. 2017, 6, 5.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523.
  • Anbukkarasi, V.; Srinivasan, R.; Elangovan, N. Antimicrobial Activity of Green Synthesized Zinc Oxide Nanoparticles from Emblica Officinalis. Int. J. Pharm. Sci. Rev. Res 2015, 33, 110–115.
  • Joel, C.; Badhusha, M. S. M. Green Synthesis of ZnO Nanoparticles Using Phyllanthus Embilica Stem Extract and Their Antibacterial Activity. Der. Pharmacia. Lettre. 2016, 8, 218–223.
  • Pinto, G. M.; Nazareth, R. Green Synthesis and Characterization of Zinc Oxide Nanoparticles. J. Chem. Pharm. Res. 2016, 8, 427–432.
  • Rangeela, M.; Rajeshkumar, S.; Lakshmi, T.; Roy, A. Anti-Inflammatory Activity of Zinc Oxide Nanoparticles Prepared Using Amla Fruits. Drug Invent. Today. 2019, 11, 2358–2361.
  • Srinisha, M.; Rajeshkumar, S.; Lakshmi, T.; Roy, A. Antibacterial Activity of Zinc Oxide Nanoparticles Synthesized Using Amla Fruit against Oral Pathogens. Drug Invent. Today. 2019, 11, 1995–1997.
  • Tasneem, U.; Yasin, N.; Nisa, I.; Shah, F.; Rasheed, U.; Momin, F.; Zaman, S.; Qasim, M. Biofilm Producing Bacteria: A Serious Threat to Public Health in Developing Countries. Food-Science. 2018, 01, 25–31.
  • Mu, H.; Tang, J.; Liu, Q.; Sun, C.; Wang, T.; Duan, J. Potent Antibacterial Nanoparticles against Biofilm and Intracellular Bacteria. J. Sci. Rep. 2016, 6, 18877.
  • Rajput, N. S.; Bankar, A. Bio-Inspired Gold Nanoparticles Synthesis and Their Anti-Biofilm Efficacy. J. Pharm. Investig. 2017, 47, 521–530.
  • Namasivayam, S. K. R.; Christo, B. B.; Arasu, S. M. K.; Kumar, K. A. M.; Deepak, K. Anti Biofilm Effect of Biogenic Silver Nanoparticles Coated Medical Devices against Biofilm of Clinical Isolate of Staphylococcus aureus. Global J. Med. Res, Pharma. Drug Discov. Toxicol. Med. 2013, 13, 25–30.
  • Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc Oxide Nanoparticle Inhibits the Biofilm Formation of Streptococcus pneumoniae. Antonie Van Leeuwenhoek. 2018, 111, 89–99.
  • Sangani, M. H.; Moghaddam, M. N.; Forghanifard, M. M. Inhibitory Effect of Zinc Oxide Nanoparticles on Pseudomonas aeruginosa Biofilm Formation. Nanomed. J. 2015, 2, 121–128.
  • Chaudhari, P. R.; Masurkar, S. A.; Shidore, V. B.; Kamble, S. P. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation. Nano-Micro Lett. 2012, 4, 34–39.
  • Li, X.; Robinson, S. M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D. F.; Sahar, A.; Riley, M. A.; Rotello, V. M. Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano. 2014, 8, 10682–10686.
  • Sadiq, I. M.; Chandrasekaran, N.; Mukherjee, A.; Studies on Effect of TiO2 Nanoparticles on Growth and Membrane Permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Cnano. 2010, 6, 381–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.