304
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of alternan-stabilized zinc nanoparticles: morphological, thermal, antioxidant and antimicrobial characterization

, , ORCID Icon, & ORCID Icon

References

  • El-Batal, A. I.; Mosalam, F. M.; Ghorab, M. M.; Hanora, A.; Elbarbary, A. M. Antimicrobial, Antioxidant and Anticancer Activities of Zinc Nanoparticles Prepared by Natural Polysaccharides and Gamma Radiation. Int. J. Biol. Macromol. 2018, 107, 2298–2311.
  • Cakić, M.; Glišić, S.; Nikolić, G.; Nikolić, G. M.; Cakić, K.; Cvetinov, M. Synthesis, Characterization and Antimicrobial Activity of Dextran Sulphate Stabilized Silver Nanoparticles. J. Mol. Struct. 2016, 1110, 156–161.
  • Mitić, Ž.; Nikolić, G. M.; Cakić, M.; Nikolić, G. S.; Živanović, S.; Mitić, S.; Najman, S. Synthesis, Spectroscopic and Structural Characterization of Co(II)-pullulan Complexes by UV-Vis, ATR-FTIR, MALDI-TOF/TOF MS and XRD. Carbohydr. Polym. 2018, 200, 25–34.
  • FDA. Select Committee on GRAS Substances (SCOGS) Opinion: Zinc Salts. GRAS Subst. (SCOGS) Database.US Food Drug Administration: Washington DC, USA, 2015,
  • Mohammad, V; Umar, A.; Hahn, Y. B. ZnO Nanoparticles: Growth, Properties, and Applications Metal Oxide Nanostructures and Their Applications. 1st ed . USA: American Scientific Publishers, 2010.
  • Jamdagni, P.; Khatri, P.; Rana, J. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ.-Sci. 2018, 30, 168–175.
  • Kasemets, K.; Ivask, A.; Dubourguier, H.-C.; Kahru, A. Toxicity of Nanoparticles of ZnO, CuO and TiO2 to Yeast Saccharomyces cerevisiae. Toxicol. In Vitro. 2009, 23, 1116–1122.
  • Zhang, L.; Ding, Y.; Povey, M.; York, D. ZnO Nanofluids–A Potential Antibacterial Agent. Prog. Nat. Sci. 2008, 18, 939–944.
  • Jalal, R.; Goharshadi, E. K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO Nanofluids: green Synthesis, Characterization, and Antibacterial Activity. Mater. Chem. Phys. 2010, 121, 198–201.
  • Espitia, P. J. P.; Soares, N. D. F. F.; Coimbra, J. S. d R.; de Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464.
  • Gunalan, S.; Sivaraj, R.; Rajendran, V. Green Synthesized ZnO Nanoparticles against Bacterial and Fungal Pathogens. Prog. Nat. Sci. Mater. Int. 2012, 22, 693–700.
  • Yusof, N. A. A.; Zain, N. M.; Pauzi, N. Synthesis of ZnO Nanoparticles with Chitosan as Stabilizing Agent and Their Antibacterial Properties against Gram-Positive and Gram-Negative Bacteria. Int. J. Biol. Macromol. 2019, 124, 1132–1136.
  • Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M. Laurus Nobilis Leaf Extract Mediated Green Synthesis of ZnO Nanoparticles: Characterization and Biomedical Applications. Biomed. Pharmacother. 2016, 84, 1213–1222.
  • Kaliaraj, G. S.; Subramaniyan, B.; Manivasagan, P.; Kim, S.-K. Green Synthesis  of Metal Nanoparticles Using Seaweed Polysaccharides. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications, Venkatesan, J.; Anil, S.; Kim, S.-K., Eds. Elsevier: Amsterdam, Netherlands, 2017; pp. 101–109.
  • Yılmaz, T. M.; İspirli, H.; Taylan, O.; Dertli, E. Synthesis and Characterisation of Alternan-Stabilised Silver  Nanoparticles and Determination of their Antibacterial and Antifungal Activities Against Foodborne Pathogens and Fungi. LWT. 2020 128, 109497.
  • FDA. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial list). US Food Drug Administration: Washington DC, USA, 2015; 21 CFR.
  • Dertli, E.; Colquhoun, I. J.; Côté, G. L.; Le Gall, G.; Narbad, A. Structural Analysis of the α-D-Glucan Produced by the Sourdough Isolate Lactobacillus brevis E25. Food Chem. 2018, 242, 45–52.
  • İspirli, H.; Sagdic, O.; Yılmaz, M. T.; Dertli, E. Physicochemical Characterisation of an α-Glucan from Lactobacillus reuteri E81 as a Potential Exopolysaccharide Suitable for Food Applications. Process Biochem. 2019, 79, 91–96.
  • Zhang, L.; Liu, C.; Li, D.; Zhao, Y.; Zhang, X.; Zeng, X.; Yang, Z.; Li, S. Antioxidant Activity of an Exopolysaccharide Isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 2013, 54, 270–275.
  • Trofin, A. E.; Trincă, L. C.; Ungureanu, E.; Ariton, A. M. CUPRAC Voltammetric Determination of Antioxidant Capacity in Tea Samples by Using Screen-Printed Microelectrodes. J. Anal. Methods Chem. 2019, 2019, 8012758.
  • Bekdeşer, B.; Özyürek, M.; Güçlü, K.; Apak, R. Novel Spectroscopic Sensor for the Hydroxyl Radical Scavenging Activity Measurement of Biological Samples. Talanta. 2012, 99, 689–696.
  • Bankura, K. P.; Maity, D.; Mollick, M. M. R.; Mondal, D.; Bhowmick, B.; Bain, M. K.; Chakraborty, A.; Sarkar, J.; Acharya, K.; Chattopadhyay, D.; et al. Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. Carbohydr. Polym. 2012, 89, 1159–1165.
  • Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S. Facile, Eco-Friendly and Template Free Photosynthesis of Cauliflower like ZnO Nanoparticles Using Leaf Extract of Tamarindus Indica (L.) and Its Biological Evolution of Antibacterial and Antifungal Activities. Spectrochim. Acta, Part A 2015, 136, 1052–1057.
  • Fang, Y.; Wen, X.; Yang, S.; Pang, Q.; Ding, L.; Wang, J.; Ge, W. Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates. J. Sol-Gel Sci. Technol. 2005, 36, 227–234.
  • Shah, M. Formation of Zinc Oxide Nanoparticles by the Reaction of Zinc Metal with Methanol at Very Low Temperature. Afr. Rev. Physics. 2008, 2, 106–109.
  • Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523.
  • Kumar, S. S.; Venkateswarlu, P.; Rao, V. R.; Rao, G. N. Synthesis, Characterization and Optical Properties of Zinc Oxide Nanoparticles. Int. Nano Lett. 2013, 3, 30.
  • Wang, Y.; Li, C.; Liu, P.; Ahmed, Z.; Xiao, P.; Bai, X. Physical Characterization of Exopolysaccharide Produced by Lactobacillus plantarum KF5 Isolated from Tibet Kefir. Carbohydr. Polym. 2010, 82, 895–903.
  • Awwad, A. M.; Salem, N. M.; Abdeen, A. O. Green Synthesis of Silver Nanoparticles Using Carob Leaf Extract and Its Antibacterial Activity. Int. J. Ind. Chem. 2013, 4, 29.
  • Pan, D.; Mei, X. Antioxidant Activity of an Exopolysaccharide Purified from Lactococcus lactis Subsp. lactis 12. Carbohydr. Polym. 2010, 80, 908–914.
  • Taş, A. C.; Majewski, P. J.; Aldinger, F. Chemical Preparation of Pure and Strontium- and/or Magnesium-Doped Lanthanum Gallate Powders. J. Am. Ceram. Soc. 2000, 83, 2954–2960.
  • Wahab, R.; Ansari, S. G.; Kim, Y. S.; Dar, M. A.; Shin, H.-S. Synthesis and Characterization of Hydrozincite and Its Conversion into Zinc Oxide Nanoparticles. J. Alloys Compd. 2008, 461, 66–71.
  • Xiao, Y.; Huang, Q.; Zheng, Z.; Guan, H.; Liu, S. Construction of a Cordyceps Sinensis Exopolysaccharide-Conjugated Selenium Nanoparticles and Enhancement of Their Antioxidant Activities. Int. J. Biol. Macromol. 2017, 99, 483–491.
  • Nagarajan, S.; Kuppusamy, K. A. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnology. 2013, 11, 39.
  • Jung, S.; et al. Viscosity and Thermal Characterization of Levan. Food Eng. Prog. 1999, 3, 176–180.
  • Kanmani, P.; Satish Kumar, R.; Yuvaraj, N.; Paari, K. A.; Pattukumar, V.; Arul, V. Production and Purification of a Novel Exopolysaccharide from Lactic Acid Bacterium Streptococcus phocae PI80 and Its Functional Characteristics Activity in vitro. Bioresour. Technol. 2011, 102, 4827–4833.
  • Wang, J.; Zhao, X.; Tian, Z.; Yang, Y.; Yang, Z. Characterization of an Exopolysaccharide Produced by Lactobacillus plantarum YW11 Isolated from Tibet Kefir. Carbohydr. Polym. 2015, 125, 16–25.
  • Sharma, O. P.; Bhat, T. K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113, 1202–1205.
  • Hoseinzadeh, E.; Alikhani, M.-Y.; Samarghandi, M.-R.; Shirzad-Siboni, M. Antimicrobial Potential of Synthesized Zinc Oxide Nanoparticles against Gram Positive and Gram Negative Bacteria. Desalin. Water Treat. 2014, 52, 4969–4976.
  • Dananjaya, S. H. S.; Kumar, R. S.; Yang, M.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Synthesis, Characterization of ZnO-Chitosan Nanocomposites and Evaluation of Its Antifungal Activity against Pathogenic Candida albicans. Int. J. Biol. Macromol. 2018, 108, 1281–1288.
  • Jamdagni, P.; et al. Comparative account of Antifungal Activity of Green and Chemically Synthesized Zinc Oxide Nanoparticles in Combination with Agricultural Fungicides. Int. J. Nano Dimens. 2018, 9, 198–208.
  • Narendra Kumar, H. K.; Chandra Mohana, N.; Nuthan, B. R.; Ramesha, K. P.; Rakshith, D.; Geetha, N.; Satish, S. Phyto-Mediated Synthesis of Zinc Oxide Nanoparticles Using Aqueous Plant Extract of Ocimum Americanum and Evaluation of Its Bioactivity. SN Appl. Sci. 2019, 1, 651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.