128
Views
4
CrossRef citations to date
0
Altmetric
Articles

The use of response surface methodology for enhanced production of a thermostable bacterial lipase in a novel yeast system

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Piscitelli, A.; Tarallo, V.; Guarino, L.; Sannia, G.; Birolo, L.; Pezzella, C. New Lipases by Mining of Pleurotus ostreatus Genome. PLoS One. 2017, 12, e0185377. DOI: 10.1371/journal.pone.0185377.
  • Ahmadpour, F.; Yakhchali, B.; Fatemi, S. S. A.; Karkhane, A. A.; Talebi, S. Cloning and Expression of an Indigenous Mesophile Lipase and Evaluation of Bacillus Codon Translation in Pichia pastoris under Control of Two Different Promoters. Appl. Biotechnol. Rep. 2016, 3, 413–418.
  • Andualema, B.; Gessesse, A. Microbial Lipases and Their Industrial Applications. Biotechnology 2012, 11, 100–118. DOI: 10.3923/biotech.2012.100.118.
  • Wongwatanapaiboon, J.; Klinbunga, S.; Ruangchainikom, C.; Thummadetsak, G.; Chulalaksananukul, S.; Marty, A.; Chulalaksananukul, W. Cloning, Expression, and Characterization of Aureobasidium melanogenum Lipase in Pichia pastoris. Biosci. Biotechnol. Biochem. 2016, 80, 2231–2240. DOI: 10.1080/09168451.2016.1206809.
  • Borrelli, G.; Trono, D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 2015, 16, 20774–20840. DOI: 10.3390/ijms160920774.
  • Liu, W.; Li, M.; Yan, Y. Heterologous Expression and Characterization of a New Lipase from Pseudomonas fluorescens Pf0–1 and Used for Biodiesel Production. Sci. Rep. 2017, 7, 15. DOI: 10.1038/s41598-017-16036-7.
  • Yang, W.; Cao, H.; Xu, L.; Zhang, H.; Yan, Y. A Novel Eurythermic and Thermostale Lipase LipM from Pseudomonas moraviensis M9 and Its Application in the Partial Hydrolysis of Algal Oil. BMC Biotechnol. 2015, 15, 94. DOI: 10.1186/s12896-015-0214-0.
  • Veno, J.; Kamarudin, N. H. A.; Ali, M. S. M.; Masomian, M.; Rahman, R. N. Z. R. A. Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability. Int. J. Mol. Sci. 2017, 18, 2202. DOI: 10.3390/ijms18112202.
  • López-López, O.; Cerdán, M. E.; González-Siso, M. I. Thermus thermophilus as a Source of Thermostable Lipolytic Enzymes. Microorganisms 2015, 3, 792–808. DOI: 10.3390/microorganisms3040792.
  • Martins, L. O.; Durão, P.; Brissos, V.; Lindley, P. F. Laccases of Prokaryotic Origin: enzymes at the Interface of Protein Science and Protein Technology. Cell. Mol. Life Sci. 2015, 72, 911–922. DOI: 10.1007/s00018-014-1822-x.
  • Wang, J.; Lu, L.; Feng, F. Combined Strategies for Improving Production of a Thermo-Alkali Stable Laccase in Pichia pastoris. Electron. J. Biotechnol. 2017, 28, 7–13. DOI: 10.1016/j.ejbt.2017.04.002.
  • Khurana, J.; Pratibha, C. S.; Kaur, J. Studies on Recombinant Lipase Production by E. coli: Effect of Media and Bacterial Expression System Optimization. Mol. Biol. 2017, 2, 00008.
  • Abu, M. L.; Nooh, H. M.; Oslan, S. N.; Salleh, A. B. Optimization of Physical Conditions for the Production of Thermostable T1 Lipase in Pichia guilliermondii Strain so Using Response Surface Methodology. BMC Biotechnol. 2017, 17, 78. DOI: 10.1186/s12896-017-0397-7.
  • Oslan, S. N.; Salleh, A. B.; Raja Abd Rahman, R. N. Z.; Leow, T. C.; Sukamat, H.; Basri, M. A Newly Isolated Yeast as an Expression Host for Recombinant Lipase. Cell. Mol. Biol. Lett. 2015, 20, 279–293. DOI: 10.1515/cmble-2015-0015.
  • Oslan, S. N.; Salleh, A. B.; Rahman, R. A. Z. R. N.; Leow, T. C.; Basri, M. Pichia pastoris as a Host to Overexpress the Thermostable T1 Lipase from Geobacillus zalihae. GSTF J. BioSci. (JBio) 2014, 3, 1–17. DOI: 10.5176/2251-3140_3.1.45.
  • Srivastava, A.; Singh, V.; Haque, S.; Pandey, S.; Mishra, M.; Jawed, A.; Shukla, P. K.; Singh, P. K.; Tripathi, C. K. M. Response Surface Methodology-Genetic Algorithm Based Medium Optimization, Purification, and Characterization of Cholesterol Oxidase from Streptomyces rimosus. Sci. Rep. 2018, 8, 10913. DOI: 10.1038/s41598-018-29241-9.
  • Hassan, M. Z.; Roslan, S. A.; Sapuan, S. M.; Rasid, Z. A.; Mohd Nor, A. F.; Md Daud, M. Y.; Dolah, R.; Mohamed Yusoff, M. Z. Mercerization Optimization of Bamboo (Bambusa vulgaris) Fiber-Reinforced Epoxy Composite Structures Using a Box–Behnken Design. Polymers 2020, 12, 1367. DOI: 10.3390/polym12061367.
  • Rajeswari, P.; Jose, P. A.; Amiya, R.; Jebakumar, S. R. D. Characterization of Saltern Based Streptomyces sp. and Statistical Media Optimization for Its Improved Antibacterial Activity. Front. Microbiol. 2014, 5, 753. DOI: 10.3389/fmicb.2014.00753.
  • Yun, T. Y.; Feng, R. J.; Zhou, D. B.; Pan, Y. Y.; Chen, Y. F.; Wang, F.; Yin, L. Y.; Zhang, Y. D.; Xie, J. H. Optimization of Fermentation Conditions through Response Surface Methodology for Enhanced Antibacterial Metabolite Production by Streptomyces sp. 1-14 from Cassava Rhizosphere. PLoS One. 2018, 13, e0206497. DOI: 10.1371/journal.pone.0206497.
  • Soleymani, S.; Alizadeh, H.; Mohammadian, H.; Rabbani, E.; Moazen, F.; Sadeghi, H. M.; et al. Efficient Media for High Lipase Production: One Variable at a Time Approach. Avicenna J. Med. Biotechnol. 2017, 9, 82.
  • Rani, S. Kaur, M. 2015. Parameter Optimization for Lipase Production by Bacillus megaterium using Response Surface Methodology. Indian J. Biochem. Bio. 2015, 52, 311–315.
  • Czyrski, A.; Sznura, J. The Application of Box-Behnken-Design in the Optimization of HPLC Separation of Fluoroquinolones. Sci. Rep. 9, 19458 2019, doi:10.1038/s41598-019-55761-z.
  • Lo, C. F.; Yu, C. Y.; Kuan, I. C.; Lee, S. L. Optimization of Lipase Production by Burkholderia sp. using Response Surface Methodology. Int. J. Mol. Sci. 2012, 13, 14889–14897. DOI: 10.3390/ijms131114889.
  • Geoffry, K.; Achur, R. N. Optimization of Novel Halophilic Lipase Production by Fusarium solani Strain NFCCL 4084 Using Palm Oil Mill effluent. J. Genet. Eng. Biotechnol. 2018, 16, 327–334. DOI: 10.1016/j.jgeb.2018.04.003.
  • Lanka, S.; Pydipalli, M.; Latha, J. N. Optimization of Process Variables for Extracellular Lipase Production from Emericella nidulans NFCCI 3643 Isolated from Palm Oil Mill Effluent (POME) Dump Sites Using OFAT Method. Res. J. Microbiol. 2015, 10, 38–53. DOI: 10.3923/jm.2015.38.53.
  • Shang, T.; Si, D.; Zhang, D.; Liu, X.; Zhao, L.; Hu, C.; et al. Enhancement of Thermoalkaliphilic Xylanase Production by Pichia pastoris through Novel Fed-Batch Strategy in High Cell-Density Fermentation. Biomed. Center Biotechnol. 2017, 17, 55.
  • Fang, Z.; Xu, L.; Pan, D.; Jiao, L.; Liu, Z.; Yan, Y. Enhanced Production of Thermomyces lanuginosus Lipase in Pichia pastoris via Genetic and Fermentation Strategies. J. Ind. Microbiol. Biotechnol. 2014, 41, 1541–1551. DOI: 10.1007/s10295-014-1491-7.
  • Vici, A. C.; da Cruz, A. F.; Facchini, F. D. A.; de Carvalho, C. C.; Pereira, M. G.; Fonseca-Maldonado, R.; Ward, R. J.; Pessela, B. C.; Fernandez-Lorente, G.; Torres, F. A. G.; et al. Beauveria bassiana Lipase a Expressed in Komagataella (Pichia) pastoris with Potential for Biodiesel Catalysis. Front. Microbiol. 2015, 6, 1083.DOI: 10.3389/fmicb.2015.01083.
  • Hassan, S. W. M.; Abd El Latif, H. H.; Ali, S. M. Production of Cold-Active Lipase by Free and Immobilized Marine Bacillus cereus HSS: Application in Wastewater Treatment. Front. Microbiol. 2018, 9, 2377. DOI: 10.3389/fmicb.2018.02377.
  • Zarinviarsagh, M.; Ebrahimipour, G.; Sadeghi, H. Lipase and Biosurfactant from Ochrobactrum intermedium Strain MZV101 Isolated by Washing Powder for Detergent application. Lipids Health Dis. 2017, 16, 177. DOI: 10.1186/s12944-017-0565-8.
  • Kai, W.; Peisheng, Y. Optimization of Lipase Production from a Novel Strain Thalassospira permensis M35-15 Using Response Surface Methodology. Bioengineered 2016, 7, 298–303. DOI: 10.1080/21655979.2016.1197713.
  • Awad, G. E.; Mostafa, H.; Danial, E. N.; Abdelwahed, N. A.; Awad, H. M. Enhanced Production of Thermostable Lipase from Bacillus cereus ASSCRC-P1 in Waste Frying Oil Based Medium Using Statistical Experimental Design. J. App. Pharm. Sci. 2015, 5, 007–015. DOI: 10.7324/JAPS.2015.50902.
  • Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; Taitai, A. Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite. Arabian J. Chem. 2017, 10, S3292–S3302. DOI: 10.1016/j.arabjc.2013.12.028.
  • Kanmani, P.; Karthik, S.; Aravind, J.; Kumaresan, K. The Use of Response Surface Methodology as a Statistical Tool for Media Optimization in Lipase Production from the Dairy Effluent Isolate Fusarium solani. ISRN Biotechnol. 2013, 2013, 528708. DOI: 10.5402/2013/528708.
  • Isiaka Adetunji, A.; Olufolahan Olaniran, A. Optimization of Culture Conditions for Enhanced Lipase Production by an Indigenous Bacillus aryabhattai SE3-PB Using Response Surface Methodology. Biotechnol. Biotechnol. Equip. 2018, 32, 1514–1513. DOI: 10.1080/13102818.2018.1514985.
  • Gururaj, P.; Ramalingam, S.; Devi, G. N.; Gautam, P. Process Optimization for Production and Purification of a Thermostable, Organic Solvent Tolerant Lipase from Acinetobacter sp. AU07. Braz. J. Microbiol. 2016, 47, 647–657. DOI: 10.1016/j.bjm.2015.04.002.
  • Jia, J.; Yang, X.; Wu, Z.; Zhang, Q.; Lin, Z.; Guo, H.; Lin, C. S. K.; Wang, J.; Wang, Y. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology. Biomed Res. Int. 2015, 2015, 497462. DOI: 10.1155/2015/497462.
  • Baadhe, R. R.; Mekala, N. K.; Parcha, S. R.; Devi, Y. P. Optimization of Amorphadiene Production in Engineered Yeast by Response Surface Methodology. 3 Biotech 2014, 4, 317–324. DOI: 10.1007/s13205-013-0156-y.
  • Arul Jose, P.; Jebakumar, S. R. D. Successive Nonstatistical and Statistical Approaches for the Improved Antibiotic Activity of Rare Actinomycete nonomuraea sp. Biomed Res. Int. 2014, 2014, 906097.
  • Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of Antibiotic Activity of Xenorhabdus bovienii by Medium Optimization Using Response Surface Methodology. Microb. Cell Fact. 2011, 10, 98. DOI: 10.1186/1475-2859-10-98.
  • Bernal, C.; Diaz, I.; Coello, N. Response Surface Methodology for the Optimization of Keratinase Production in Culture Medium Containing Feathers Produced by Kocuria rosea. Can. J. Microbiol. 2006, 52, 445–450. DOI: 10.1139/w05-139.
  • Kusuma, H. S.; Mahfud, M. Response Surface Methodology for Optimization Studies of Microwave Assisted Extraction of Sandalwood Oil. J. Mater. Environ. Sci. 2016, 7, 1958–1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.