253
Views
3
CrossRef citations to date
0
Altmetric
Articles

Isolation of bioactive components with soluble epoxide hydrolase inhibitory activity from Stachys sieboldii MiQ. by ultrasonic-assisted extraction optimized using response surface methodology

, , , , , , & show all

References

  • Yin, J.; Yang, G.; Wang, S.; Chen, Y. Purification and Determination of Stachyose in Chinese Artichoke (Stachys sieboldii Miq.) by High-Performance Liquid Chromatography with Evaporative Light Scattering Detection. Talanta. 2006, 70, 208–212.
  • Lee, J. K.; Lee, J.-J.; Kim, Y.-K.; Lee, Y.; Ha, J.-H. Stachys sieboldii Miq. root Attenuates Weight Gain and Dyslipidemia in Rats on a High-Fat and High-Cholesterol Diet. Nutrients. 2020, 12, 2063.
  • Husak, L.; Dakhym, I.; Marchyshyn, S.; Demydyak, O.; Kyryliv, M. Determination of Phenolic Compounds from Stachys sieboldii MIQ. Herb and Tubers. The Pharm. Innov. 2017, 6, 450–453.
  • Jeon, K.-S.; Lee, N.-H.; Park, S.-I. Quality Characteristics of White Pan Bread with Chinese Artichoke (Stachys sieboldii MIQ) Powder. Culi. Sci. Hos. Res. 2015, 21, 1–15.
  • Choi, S.-H. Quality Characteristics of Yanggaeng Added with Chinese Artichoke (Stachys sieboldii Miq) Powder. Culi. Sci. Hos. Res. 2016, 22, 99–108.
  • Jeon, K.-S.; Park, S.-I. Antioxidative Properties of Chinese Artichoke (Stachys sieboldii Miq) Added White Bread. Culi. Sci. Hos. Res. 2015, 21, 120–132.
  • Kim, Y.-K.; Son, H.-K.; Lee, J.-J. Nutritional Components and Antioxidant Activities of Various Stachys Sieboldii Miq Parts. KJCLS. 2017, 28, 203–215.
  • Feng, K.; Chen, W.; Sun, L.; Liu, J.; Zhao, Y.; Li, L.; Wang, Y.; Zhang, W. Optimization Extraction, Preliminary Characterization and Antioxidant Activity in Vitro of Polysaccharides from Stachys Sieboldii Miq. tubers. Carbohydr. Polym. 2015, 125, 45–52.
  • Ebrahimabadi, A. H.; Ebrahimabadi, E. H.; Djafari-Bidgoli, Z.; Kashi, F. J.; Mazoochi, A.; Batooli, H. Composition and Antioxidant and Antimicrobial Activity of the Essential Oil and Extracts of Stachys Inflata Benth from Iran. Food Chem. 2010, 119, 452–458.
  • Xuan Duy, L.; Le Ba, V.; Gao, D.; Hoang, V. D.; Quoc Toan, T.; Yang, S. Y.; Duy Quang, D.; Kim, Y. H.; Cuong, N. M. Soluble Epoxide Hydrolase Inhibitors from Docynia Indica (Wall.) Decne. Nat. Prod. Res. 2020.DOI: 10.1080/14786419.2020.1774759.
  • Kim, J. H.; Jo, Y. D.; Jin, C. H. Isolation of Soluble Epoxide Hydrolase Inhibitor of Capsaicin Analogs from Capsicum Chinense Jacq. cv. Habanero. Int. J. Biol. Macromol. 2019, 135, 1202–1207.
  • Wang, C. Y.; Lee, S.; Jang, H.-J.; Su, X. D.; Wang, H.-S.; Kim, Y. H.; Yang, S. Y. Inhibition Potential of Phenolic Constituents from the Aerial Parts of Tetrastigma Hemsleyanum against Soluble Epoxide Hydrolase and Nitric Oxide Synthase. J. Enzym. Inhib. Med. Ch. 2019, 34, 753–760.
  • Thao, N. P.; Kim, J. H.; Luyen, B. T. T.; Dat, N. T.; Kim, Y. H. In Silico Investigation of Cycloartane Triterpene Derivatives from Cimicifuga Dahurica (Turcz.) Maxim. Roots for the Development of Potent Soluble Epoxide Hydrolase Inhibitors. Int. J. Biol. Macromol. 2017, 98, 526–534.
  • Burmistrov, V.; Morisseau, C.; Karlov, D.; Pitushkin, D.; Vernigora, A.; Rasskazova, E.; Butov, G. M.; Hammock, B. D. Bioisosteric Substitution of Adamantane with Bicyclic Lipophilic Groups Improves Water Solubility of Human Soluble Epoxide Hydrolase Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127430.
  • Codony, S.; Pujol, E.; Pizarro-Delgado, J.; Feixas, F.; Valverde, E.; Loza, M. I.; Brea, J. M.; Sáez, E.; Oyarzabal, J.; Pineda-Lucena, A. 2-Oxaadamant-1-yl Ureas as Soluble Epoxide Hydrolase Inhibitors: In Vivo Evaluation in a Murine Model of Acute Pancreatitis. J. Med. Chem. 2020, 63, 9237–9257.
  • Vijaya Abinaya, R.; Kim, M.; Lee, S. J.; Jeong, Es.; Cha, Y. S. Protective Effects of Stachys Sieboldii MIQ Extract in SK‐N‐SH Cells and Its Memory Ameliorative Effect in Mice. J. Food Biochem. 2017, 41, e12411.
  • Hayashi, K.; Nagamatsu, T.; Ito, M.; Hattori, T.; Suzuki, Y. Acteoside, a Component of Stachys Sieboldii MIQ, May Be a Promising Antinephritic Agent (2): Effect of Acteoside on Leukocyte Accumulation in the Glomeruli of Nephritic rats. Jpn. J. Pharmacol. 1994, 66, 47–52.
  • Bleotu, A.; Mandravel, C.; Ciuculescu, C. Characterization of Some Glycoside Iridoids by Mass Spectrometry. Rom. Biotech. Lett. 2006, 11, 2643.
  • Chung, H.-J.; Kim, W. K.; Park, H. J.; Cho, L.; Kim, M-r.; Kim, M. J.; Shin, J.-S.; Lee, J. H.; Ha, I.-H.; Lee, S. K. Anti-Osteoporotic Activity of Harpagide by Regulation of Bone Formation in Osteoblast Cell Culture and Ovariectomy-Induced Bone Loss Mouse Models. J. Ethnopharmacol. 2016, 179, 66–75.
  • Zhang, L.; Feng, L.; Jia, Q.; Xu, J.; Wang, R.; Wang, Z.; Wu, Y.; Li, Y. Effects of β-Glucosidase Hydrolyzed Products of Harpagide and Harpagoside on Cyclooxygenase-2 (COX-2) in Vitro. Bioorg. Med. Chem. 2011, 19, 4882–4886.
  • Wang, K.; Lou, Y.; Xu, H.; Zhong, X.; Huang, Z. Harpagide from Scrophularia Protects Rat Cortical Neurons from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury by Decreasing Endoplasmic Reticulum Stress. J. Ethnopharmacol. 2020, 253, 112614. DOI: 10.1016/j.jep.2020.112614.
  • Wen, B.; He, R.; Li, P.; Xu, Q.; Lu, Y.; Peng, B.; Li, J. Pharmacokinetics of 8-O-Acetylharpagide and Harpagide After Oral Administration of Ajuga decumbens Thunb Extract in Rats. J. Ethnopharmacol. 2013, 147, 503–508.
  • Li, W.; Deng, R.; Jing, X.; Chen, J.; Yang, D.; Shen, J. Acteoside Ameliorates Experimental Autoimmune Encephalomyelitis Through Inhibiting Peroxynitrite-Mediated Mitophagy Activation. Free Radical Bio. Med. 2020, 146, 79–91.
  • Qiao, Z.; Tang, J.; Wu, W.; Tang, J.; Liu, M. Acteoside Inhibits Inflammatory Response via JAK/STAT Signaling Pathway in Osteoarthritic Rats. BMC Complem. Altern. M. 2019, 19, 1–8.
  • Qiu, H.; Fan, W.; Fu, P.; Zuo, C.; Feng, P.; Liu, F.; Zhou, L.; Chen, F.; Zhong, H.; Liang, Y. General Acteoside of Rehmanniae Leaves in the Treatment of Primary Chronic Glomerulonephritis: A Randomized Controlled Trial. Afr. J. Trad. Complem. 2013, 10, 109–115.
  • Qiu, HYu.; Fu, P.; Fan, W.; Zuo, C.; Feng, P.; Shi, P.; Cao, L.; Liu, F.; Zhou, L.; Chen, F.; et al. Treatment of Primary Chronic Glomerulonephritis with Rehmannia Glutinosa Acteosides in Combination with the Angiotensin Receptor Blocker Irbesartan: A Randomized Controlled Trial. Phytother. Res. 2014, 28, 132–136.
  • Sun, S.-Q.; Wang, Y.-J.; Xu, W.; Zhu, C.-J.; Liu, X.-X. Optimizing Ultrasound-Assisted Extraction of Prodigiosin by Response Surface Methodology. Prep. Biochem. Biotechnol. 2015, 45, 101–108.
  • Wang, S.; Li, C.; Wang, H.; Zhong, X.; Zhao, J.; Zhou, Y. A Process Optimization Study on Ultrasonic Extraction of Paclitaxel from Taxus cuspidata. Prep. Biochem. Biotechnol. 2016, 46, 274–280.
  • Wang, X.; Jiang, Y.; Hu, D. Antiproliferative Activity of Curcuma Phaeocaulis Valeton Extract Using Ultrasonic Assistance and Response Surface Methodology. Prep. Biochem. Biotechnol. 2017, 47, 19–31.
  • Navarrete-Bolaños, J.; Téllez-Martínez, M.; Miranda-López, R.; Jiménez-Islas, H. An Experimental Strategy Validated to Design Cost-Effective Culture Media Based on Response Surface Methodology. Prep. Biochem. Biotechnol. 2017, 47, 578–588.
  • Chen, H.; Jiang, P.; Li, F.; Wu, H. Improving Production of Thermostable and Fluorescent Holo-β-Allophycocyanin by Metabolically Engineered Escherichia coli Using Response Surface Methodology. Prep. Biochem. Biotechnol. 2015, 45, 730–741.
  • Arvindekar, A.; Laddha, K. An Efficient Microwave-Assisted Extraction of Anthraquinones from Rheum Emodi: optimisation Using RSM, UV and HPLC Analysis and Antioxidant Studies. Ind. Crop Prod. 2016, 83, 587–595.
  • Lee, G. H.; Oh, S. J.; Lee, S. Y.; Lee, J.-Y.; Ma, J. Y.; Kim, Y. H.; Kim, S. K. Discovery of Soluble Epoxide Hydrolase Inhibitors from Natural Products. Food Chem. Toxicol. 2014, 64, 225–230.
  • Thao, N. P.; Luyen, B. T. T.; Lee, J. S.; Kim, J. H.; Kim, Y. H. Soluble Epoxide Hydrolase Inhibitors of Indolinone Alkaloids and Phenolic Derivatives from Cimicifuga Dahurica (Turcz.) Maxim. Bioorg. Med. Chem. Lett. 2017, 27, 1874–1879.
  • Vanella, L.; Canestraro, M.; Lee, C. R.; Cao, J.; Zeldin, D. C.; Schwartzman, M. L.; Abraham, N. G. Soluble Epoxide Hydrolase Null Mice Exhibit Female and Male Differences in Regulation of Vascular Homeostasis. Prostagl. Oth. Lipid M. 2015, 120, 139–147.
  • Fang, X. Soluble Epoxide Hydrolase: A Novel Target for the Treatment of Hypertension. Prc. 2006, 1, 67–72.
  • Frömel, T.; Jungblut, B.; Hu, J.; Trouvain, C.; Barbosa-Sicard, E.; Popp, R.; Liebner, S.; Dimmeler, S.; Hammock, B. D.; Fleming, I. Soluble Epoxide Hydrolase Regulates Hematopoietic Progenitor Cell Function via Generation of Fatty Acid Diols. Proc. Natl. Acad. Sci. USA. 2012, 109, 9995–10000.
  • Diaz-de-Cerio, E.; Pasini, F.; Verardo, V.; Fernandez-Gutierrez, A.; Segura-Carretero, A.; Caboni, M. F. Psidium Guajava L. leaves as Source of Proanthocyanidins: Optimization of the Extraction Method by RSM and Study of the Degree of Polymerization by NP-HPLC-FLD-ESI-MS. J. Pharm. Biomed. Anal. 2017, 133, 1–7.
  • Chiang, W.-D.; Shih, C.-J.; Chu, Y.-H. Optimization of Acid Hydrolysis Conditions for Total Isoflavones Analysis in Soybean Hypocotyls by Using RSM. Food Chem. 2001, 72, 499–503.
  • Yuan, J.; Huang, J.; Wu, G.; Tong, J.; Xie, G.; Duan, J-A.; Qin, M. Multiple Responses Optimization of Ultrasonic-Assisted Extraction by Response Surface Methodology (RSM) for Rapid Analysis of Bioactive Compounds in the Flower Head of Chrysanthemum Morifolium Ramat. Ind. Crop Prod. 2015, 74, 192–199.
  • Pandey, A.; Belwal, T.; Sekar, K. C.; Bhatt, I. D.; Rawal, R. S. Optimization of Ultrasonic-Assisted Extraction (UAE) of Phenolics and Antioxidant Compounds from Rhizomes of Rheum Moorcroftianum Using Response Surface Methodology (RSM). Ind. Crop Prod. 2018, 119, 218–225.
  • Bae, I. K.; Ham, H. M.; Jeong, M. H.; Kim, D. H.; Kim, H. J. Simultaneous Determination of 15 Phenolic Compounds and Caffeine in Teas and Mate Using RP-HPLC/UV Detection: method Development and Optimization of Extraction Process. Food Chem. 2015, 172, 469–475.
  • Belwal, T.; Dhyani, P.; Bhatt, I. D.; Rawal, R. S.; Pande, V. Optimization Extraction Conditions for Improving Phenolic Content and Antioxidant Activity in Berberis Asiatica Fruits Using Response Surface Methodology (RSM). Food Chem. 2016, 207, 115–124.
  • Pinho, C.; Melo, A.; Mansilha, C.; Ferreira, I. M. Optimization of Conditions for Anthocyanin Hydrolysis from Red Wine Using Response Surface Methodology (RSM). J. Agric. Food Chem. 2011, 59, 50–55.
  • Zou, T.; Wang, D.; Guo, H.; Zhu, Y.; Luo, X.; Liu, F.; Ling, W. Optimization of Microwave-Assisted Extraction of Anthocyanins from Mulberry and Identification of Anthocyanins in Extract Using HPLC-ESI-MS. J. Food Sci. 2012, 77, C46–C50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.