303
Views
9
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of cyanide in cassava wastewater using a novel thermodynamically-stable immobilized rhodanese

ORCID Icon, &

References

  • Siller, H.; Winter, J. Degradation of Cyanide in Agroindustrial or Industrial Wastewater in an Acidification Reactor or in a Single-Step Methane Reactor by Bacteria Enriched from Soil and Peels of Cassava. Appl. Microbiol. Biotechnol. 1998, 50, 384–389. DOI: 10.1007/s002530051309.
  • Balagopalan, C.; Rajalakshmy, L. Cyanogen Accumulation in Environment during Processing of Cassava (Manihot esculenta Crantz) for Starch and Sago. Water Air Soil Pollut. 1998, 102, 407–413. DOI: 10.1023/A:1004992611810.
  • Kandasamy, S.; Dananjeyan, B.; Krishnamurthy, K.; Benckiser, G. Aerobic Cyanide Degradation by Bacterial Isolates from Cassava Factory Wastewater. Braz. J. Microbiol. 2015, 46, 659–666. DOI: 10.1590/s1517-838246320130516.
  • Enerijiofi, K. E.; Ekhaise, F. O.; Ekomabasi, I. E. Biodegradation Potentials of Cassava Mill Effluent (CME) by Indigenous Microorganisms. JASEM 2017, 21, 1029–1034. DOI: 10.4314/jasem.v21i6.5.
  • Akcil, A.; Mudder, T. Microbial Destruction of Cyanide Wastes in Gold Mining: Process Review. Biotechnol. Lett. 2003, 25, 445–450. DOI: 10.1023/a:1022608213814.
  • Patil, Y. B.; Paknikar, K. M. Biodetoxification of Silver-Cyanide from Electroplating Industry Wastewater. Lett. Appl. Microbiol. 2000, 30, 33–37. DOI: 10.1046/j.1472-765x.2000.00648.x.
  • Rao, M. A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of Enzymes in the Remediation of Polluted Environments. J. Soil Sci. Plant Nutr. 2010, 10, 333–353. DOI: 10.4067/S0718-95162010000100008.
  • Raybuck, S. A. Microbes and Microbial Enzymes for Cyanide Degradation. Biodegradation 1992, 3, 3–18. DOI: 10.1007/BF00189632.
  • Cipollone, R.; Frangipani, E.; Tiburzi, F.; Imperi, F.; Ascenzi, P.; Visca, P. Involvement of Pseudomonas aeruginosa Rhodanese in Protection from Cyanide Toxicity. Appl. Environ. Microbiol. 2007, 73, 390–398. DOI: 10.1128/AEM.02143-06.
  • Saidu, Y. Physicochemical Features of Rhodanese: A Review. Afr. J. Biotechnol. 2004, 3, 370–374. DOI: 10.5897/ajb2004.000-2071
  • Mattiasson, B.; Mosbach, K.; Svenson, A. Application of Cyanide-Metabolizing Enzymes to Environmental Control; Enzyme Thermistor Assay of Cyanide Using Immobilized Rhodanese and Injectase. Biotechnol. Bioeng. 1977, 19, 1643–1651. DOI: 10.1002/bit.260191104.
  • Cipollone, R.; Ascenzi, P.; Frangipani, E.; Visca, P. Cyanide Detoxification by Recombinant Bacterial Rhodanese. Chemosphere 2006, 63, 942–949. DOI: 10.1016/j.chemosphere.2005.09.048.
  • Kaewkannetra, P.; Imai, T.; Garcia-Garcia, F. J.; Chiu, T. Y. Cyanide Removal from Cassava Mill Wastewater Using Azotobactor vinelandii TISTR 1094 with Mixed Microorganisms in Activated Sludge Treatment System. J. Hazard. Mater. 2009, 172, 224–228. DOI: 10.1016/j.jhazmat.2009.06.162.
  • Ray, C.; Ramesh, C.; Padmaja, G.; Balagopalan, C. Extracellular Rhodanese Production by Rhizopus oryzae. Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. B 1990, 145, 259–268.
  • Oi, S. Purification and Some Properties of Trametes sanguinea Rhodanese. Agric. Biol. Chem. 1973, 37, 629–635. DOI: 10.1080/00021369.1973.10860712.
  • Nok, A. J.; Nasir, S. M.; Sa Adatu, Y. Immobilized Rhodanese: some Aspects of Anion Inhibition Kinetics and Modulation by Cations. J. Biochem. Toxicol. 1993, 8, 57–63. DOI: 10.1002/jbt.2570080202.
  • Horowitz, P.; Bowman, S. Reversible Thermal Denaturation of Immobilized Rhodanese. J. Bio. Chem. 1987, 262, 5587–5591.
  • Lassouane, F.; Aït-Amar, H.; Amrani, S.; Rodriguez-Couto, A. A Promising Laccase Immobilization Approach for Bisphenol a Removal from Aqueous Solutions. Bioresour. Technol. 2019, 271, 360–367. DOI: 10.1016/j.biortech.2018.09.129.
  • Datta, S.; Christena, L. R.; Rajaram, Y. R. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech 2013, 3, 1–9. DOI: 10.1007/s13205-012-0071-7.
  • Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Adv. 2014, 4, 1583–1600. DOI; 10.1039/c3ra45991h
  • Barbosa, O.; Torres, R.; Ortiz, C.; Fernandez-Lafuente, R. Versatility of Glutaraldehyde to Immobilize Lipases: Effect of the Immobilization Protocol on the Properties of Lipase B from Candida antarctica. Proc. Biochem. 2012, 47, 1220–1227. DOI: 10.1016/j.procbio.2012.04.019
  • Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C. Glutaraldehyde: behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. Biotechniques. 2004, 37, 790–802. DOI: 10.2144/04375RV01.
  • Ademakinwa, A. N.; Agboola, F. K. Biochemical Characterization and Kinetic Studies on a Purified Yellow Laccase from Newly Isolated Aureobasidium pullulans NAC8 Obtained from Soil Containing Decayed Plant Matter. J. Gen. Eng. Biotech. 2016, 14, 143–151. DOI: 10.1016/j.jgeb.2016.05.004.
  • Ademakinwa, A. N.; Ayinla, Z. A.; Agboola, F. K. Strain Improvement and Statistical Optimization as a Combined Strategy for Improving Fructosyltransferase Production by Aureobasidium pullulans NAC8. J. Gen. Eng. Biotech. 2017, 15, 345–358. DOI: 10.1016/j.jgeb.2017.06.012
  • Ademakinwa, A. N.; Agboola, F. K. Kinetic and Thermodynamic Investigations of Cell-Wall Degrading Enzymes Produced by Aureobasidium pullulans via Induction with Orange Peels: application in Lycopene Extraction. Prep. Biochem. Biotechnol. 2019, 49, 949–960. https://doi.10.1080/10826068.2019.1650375. DOI: 10.1080/10826068.2019.1650375.
  • Kudanga, T.; Mwenje, E. Extracellular Cellulase Production by Tropical Isolates of Aureobasidium pullulans. Can. J. Microbiol. 2005, 51, 773–776. DOI: 10.1139/w05-053.
  • Ademakinwa, A. N.; Agboola, F. K. Bioremediation of Textile Dye Solutions, Textile Dye Mixtures and Textile Effluents by Laccase from Aureobasidium pullulans (de Bary) G. Arnaud (1918) (Fungi: Ascomycota). Braz. J. Biol. Sci. 2015, 2, 253–262.
  • Ademakinwa, A. N.; Agboola, F. K. Some Biochemical, Catalytic, Thermodynamic and Kinetic Properties of Purified Fructosyltransferase from Wild and Improved Mutant-Type Aureobasidium pullulans NAC8. Biocatal. Biotransfor. 2019, 38, 241–252. DOI: 10.1080/10242422.2019.1671376
  • Westley, J. Thiosulfate: Cyanide Sulfurtransferase (Rhodanese). Methods Enzymol. 1981, 77, 285–291. DOI: 10.1016/s0076-6879(81)77039-3.
  • Atere, T. G.; Ademakinwa, A. N.; Agboola, F. K. Properties of Rhodanese from the Liver of Tilapia, Oreochromis Niloticus, in Asejire Lake, Nigeria. Afr. J. Biochem. Res. 2014, 8, 74–83. DOI: 10.5897/AJBR2014.0755.
  • Ogudugu, B. E.; Ademakinwa, A. N.; Agboola, F. K. Purification and Physicochemical Properties of Rhodanese from Liver of Goat, Capra Aegagrus Hircus. J. Biochem. Mol. Biol. Res. 2015, 1, 105–111.
  • Sorbo, B. H. On the Properties of Rhodanese: Partial Purification, Inhibitors and Intracellular Distribution. Acta Chemica Scandinavia 1951, 5, 724–726.
  • Matthies, A.; Rajagopalan, K. V.; Mendel, R. R.; Leimkuhler, S. Evidence for the Physiological Role of a Rhodanese-Like Protein for the Biosynthesis of the Molybdenum Cofactor in Humans. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5946–5951. DOI: 10.1073/pnas.0308191101.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3
  • Ademakinwa, A. N.; Agunbiade, M. O.; Ayinla, Z. A.; Agboola, F. K. Optimization of Aqueous Two-Phase Partitioning of Aureobasidium pullulans α-Amylase via Response Surface Methodology and Investigation of Its Thermodynamic and Kinetic Properties. Int. J. Biol. Macromol. 140, 833–841. 2019, DOI: 10.1016/j.ijbiomac.2019.08.159.
  • Porto, T. S.; Porto, C. S.; Cavalcanti, M. T. H.; Filho, J. L. L.; Perego, P.; Porto, A. L. F.; Converti, A.; Pessoa, A. Kinetic and Thermodynamic Investigation on Ascorbate Oxidase Activity and Stability of a Cucurbita maxima Extract. Biotechnol. Prog. 2006, 22, 1637–1642. DOI: 10.1021/bp0602350.
  • Silva, O. S.; Oliveira, R. L.; Silva, J. C.; Converti, A.; Porto, T. S. Thermodynamic Investigation of an Alkaline Protease from Aspergillus tamarii URM4634: A Comparative Approach between Crude Extract and Purified Enzyme Int. Int. J. Biol. Macromol. 2018, 109, 1039–1044. DOI: 10.1016/j.ijbiomac.2017.11.081.
  • Mazzola, P. G.; Penna, T. C. V.; Martins, A. M. S. Determination of Decimal Reduction Time (D Value) of Chemical Agents Used in Hospitals for Disinfection Purposes. BMC Infect. Dis. 2003, 3, 33–34. DOI: 10.1186/1471-2334-3-24.
  • De Oliveira, R. L.; da Silva, O. S.; Converti, A.; Porto, T. S. Thermodynamic and Kinetic Studies on Pectinase Extracted from Aspergillus aculeatus: Free and Immobilized Enzyme Entrapped in Alginate beads. Int. J. Biol. Macromol. 2018, 115, 1088–1093. DOI: 10.1016/j.ijbiomac.2018.04.154.
  • Melikoglu, M.; Lin, C. S. K.; Webb, C. Kinetic Studies on the Multi-Enzyme Solution Produced via Solid State Fermentation of Waste Bread by Aspergillus awamori. Biochem. Eng. J. 2013, 80, 76–82. DOI: 10.1016/j.bej.2013.09.016
  • Drochioiu, G. Fast and Highly Selective Determination of Cyanide with 2,2-Dihydroxy-1,3-Indanedione. Talanta 2002, 56, 1163–1165. DOI: 10.1016/s0039-9140(01)00609-9
  • Siller, H.; Winter, J. Treatment of Cyanide-Containing Wastewater from the Food Industry in a Laboratory-Scale Fixed-Bed Methanogenic Reactor. Appl. Microbiol. Biotechnol. 1998, 49, 215–220. DOI: 10.1007/s002530051161
  • Teerapatsakul, C.; Parra, R.; Keshavarz, T.; Chitradon, L. Repeated Batch for Dye Degradation in an Airlift Bioreactor by Laccase Entrapped in Copper Alginate. Int. Biodeterior. Biodegrad. 2017, 120, 52–57. DOI: 10.1016/j.ibiod.2017.02.001.
  • Pal, A.; Khanum, F. Covalent Immobilization of Xylanase on Glutaraldehyde Activated Alginate Beads Using Response Surface Methodology: Characterization of Immobilized Enzyme. Proc. Biochem. 2011, 46, 1315–1322. DOI:: 10.1016/j.procbio.2011.02.024
  • Tayefi-Nasrabadi, H.; Asadpour, R. Effect of Heat Treatment on Buffalo (Bubalus bubalis) Lactoperoxidase Activity in Raw Milk. J. Biol. Sci. 2008, 8, 1310–1315. DOI: 10.3923/jbs.2008.1310.1315.
  • Xiong, Y. H.; Liu, J. Z.; Song, H. Y.; Ji, L. N. Purification, Kinetic and Thermodynamic Studies of a New Ribonuclease from a Mutant of Aspergillus niger. J. Biotechnol. 2005, 119, 348–356. DOI: 10.1016/j.jbiotec.2005.04.008.
  • Pace, C. N. Contribution of the Hydrophobic Effect to Globular Protein Stability. J. Mol. Biol. 1992, 226, 29–35. DOI: 10.1016/0022-2836(92)90121-Y.
  • Abdel Wahab, W. A.; Karam, E. A.; Hassan, M. E.; Kansoh, A. L.; Esawy, M. A.; Awad, G. E. A. Optimization of Pectinase Immobilization on Grafted Alginate-Agar Gel Beads by 24 Full Factorial CCD and Thermodynamic Profiling for Evaluating of Operational Covalent Immobilization. Int. J. Biol. Macromol. 2018, 113, 159–170. DOI: 10.1016/j.ijbiomac.2018.02.086.
  • Sheldon, R. A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. DOI: 10.1039/c3cs60075k.
  • Metcalf, E.; Eddy, A. Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed.; McGraw-Hill, Inc.: Singapore, 1991.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.