280
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of precursor feeding, dietary supplementation, chemical elicitors and co-culturing on resveratrol production by Arcopilus aureus

ORCID Icon & ORCID Icon

References

  • Aly, A. H.; Debbab, A.; Proksch, P. Fungal Endophytes – Secret Producers of Bioactive Plant Metabolites. Pharmazie. 2013, 68, 499–505.
  • Saxena, S.; Srivastava, A. Resveratrol: Biological Activities and Therapeutic Potential. JPTRM. 2014, 2, 145–157.
  • Berman, A. Y.; Motechin, R. A.; Wiesenfeld, M. Y.; Holz, M. The Therapeutic Potential of Resveratrol: A Review of Clinical Trials. Npj Precision Onc. 2017, 1, 35.
  • Xiao, Q.; Zhu, W.; Feng, W.; Lee, S. S.; Leung, A. W.; Shen, J.; Gao, L.; Xu, C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front. Pharmacol. 2018, 9, 1534.
  • Komorowska, J.; Wątroba, M.; Szukiewicz, D. Review of Beneficial Effects of Resveratrol in Neurodegenerative Diseases Such as Alzheimer's Disease. Adv. Med. Sci. 2020, 65, 415–523.
  • Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the Phytoalexin Resveratrol by Grapes as a Response to Botrytis Attack under Natural Conditions. J. Phytopathol. 1995, 143, 135–139.
  • Douillet-Breuil, A. C.; Jeandet, P.; Adrian, M.; Bessis, R. Changes in the Phytoalexin Content of Various Vitis Spp. in Response to Ultraviolet C Elicitation. J. Agric. Food Chem. 1999, 47, 4456–4461.
  • Zhang, D.; Li, X.; Hao, D.; Li, G.; Xu, B.; Ma, G.; Su, Z. Systematic Purification of Polydatin, Resveratrol and Anthraglycoside B from Polygonum Cuspidatum Sieb. et Zucc. Sep. Purif. Technol. 2009, 66, 329–339.
  • Vastano, B. C.; Chen, Y.; Zhu, N.; Ho, C. T.; Zhou, Z.; Rosen, R. T. Isolation and Identification of Stilbenes in Two Varieties of Polygonum Cuspidatum. J. Agric. Food Chem. 2000, 48, 253–256.
  • Wang, D. G.; Liu, W. Y.; Chen, G. T. A Simple Method for the Isolation and Purification of Resveratrol from Polygonum Cuspidatum. J. Pharm. Anal. 2013, 3, 241–247.
  • Jeandet, P.; Delaunois, B.; Aziz, A.; Donnez, D.; Vasserot, Y.; Cordelier, S.; Courot, E. Metabolic Engineering of Yeast and Plants for the Production of the Biologically Active Hydroxystilbene, Resveratrol. J. Biomed. Biotechnol. 2012, 2012, 579089.
  • Lu, Y.; Shao, D.; Shi, J.; Huang, Q.; Yang, H.; Jin, M. Strategies for Enhancing Resveratrol Production and the Expression of Pathway enzymes. Appl. Microbiol. Biotechnol. 2016, 100, 7407–7421.
  • Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-Derived Bioactive Compounds Produced by Endophytic Fungi. Mini Rev. Med. Chem. 2011, 11, 159–168.
  • Singh, A.; Singh, D. K.; Kharwar, R. N.; White, J. F.; Gond, S. K. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms. 2021, 9, 197.
  • Rosa, S.; Quax Wim, J.; Haslinger, K. Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Front Bioeng Biotechnol 2021, 9, 649906.
  • Waddington, C. H. The Epigenotype. Endeavor. 1942, 1, 18–20.
  • Williams, R. B.; Henrikson, J. C.; Hoover, A. R.; Lee, A. E.; Cichewicz, R. H. Epigenetic Remodelling of the Fungal Secondary Metabolome. Org. Biomol. Chem. 2008, 6, 1895–1897.
  • Bhat, M. I.; Kapila, R. Dietary Metabolites Derived from Gut Microbiota: critical Modulators of Epigenetic Changes in Mammals. Nutrition Rev. 2017, 75, 374–389.
  • Sharma, V. K.; Kumar, J.; Singh, D. K.; Mishra, A.; Verma, S. K.; Gond, S. K.; Kumar, A.; Singh, N.; Kharwar, R. N. Induction of Cryptic and Bioactive Metabolites through Natural Dietary Components in an Endophytic Fungus Colletotrichum Gloeosporioides (Penz.) Sacc. Front. Microbiol. 2017, 8, 1126.
  • Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural Products from Endophytic Microorganisms. J. Nat. Prod. 2004, 67, 257–268.
  • Netzker, T.; Fischer, J.; Weber, J.; Mattern, D. J.; König, C. C.; Valiante, V.; Schroeckh, V.; Brakhage, A. A. Microbial Communication Leading to the Activation of Silent Fungal Secondary Metabolite Gene Clusters. Front. Microbiol. 2015, 6, 299.
  • Dwibedi, V.; Saxena, S. Arcopilus Aureus, a Resveratrol-Producing Endophyte from Vitis vinifera. Appl. Biochem. Biotechnol. 2018, 186, 476–495.
  • Shi, J.; Zeng, Q.; Liu, Y.; Pan, Z. Alternaria sp. MG1, a Resveratrol-Producing Fungus: isolation, Identification, and Optimal Cultivation Conditions for Resveratrol Production. Appl. Microbiol. Biotechnol. 2012, 95, 369–379.
  • Dincheva, I.; Badjakov, I.; Tsvetkov, I.; Dzhambazova, T.; Kondakova, V.; Batchvarova, R. GC-MS Determination of Secondary Metabolites in Red Wine from Bulgarian Wild Grape (Vitis vinifera). Journal of Mountain Agriculture on the Balkans 2011, 14, 131–1343.
  • Ramirez‐Lopez, L. M.; DeWitt, C. A. Analysis of Phenolic Compounds in Commercially Dried Grape Pomace by High‐Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. Food Sci. Nutr. 2014, 2, 470–477.
  • Xu, W.; Yu, Y.; Zhou, Q.; Ding, J.; Dai, L.; Xie, X.; Xu, Y.; Zhang, C.; Wang, Y. Expression Pattern, Genomic Structure, and Promoter Analysis of the Gene Encoding Stilbene Synthase from Chinese Wild Vitis Pseudoreticulata. J. Exp. Bot. 2011, 62, 2745–2761.
  • Rühmann, S.; Pfeiffer, J.; Brunner, P.; Szankowski, I.; Fischer, T. C.; Forkmann, G.; Treutter, D. Induction of Stilbene Phytoalexins in Grapevine (Vitis vinifera) and Transgenic Stilbene Synthase-Apple Plants (Malus Domestica) by a Culture Filtrate of Aureobasidium Pullulans. Plant Physiol. Biochem. 2013, 72, 62–71.
  • White, T. J.; Bruns, T.; Lee, S. B.; Taylor, J. W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR – Protocols and Applications: A Laboratory Manual; Innis, M. A., Gelfand, G. H., Sninsky, J. J., White, T. J., Eds.; Academic Press; 1990. pp. 315–322.
  • Gonzalez, J. B.; Fernandez, F. J.; Tomasini, A. Microbial Secondary Metabolites Production and Strain Improvement. Indian J. Biotechnol. 2003, 2, 322–333.
  • Li, H.-T.; Zhou, H.; Duan, R.-T.; Li, H.-Y.; Tang, L.-H.; Yang, X.-Q.; Yang, Y.-B.; Ding, Z.-T. Inducing Secondary Metabolite Production by co-Culture of the Endophytic Fungus Phoma sp. and the Symbiotic Fungus Armillaria sp. J. Nat. Prod. 2019, 82, 1009–1013.
  • do Nascimento, J. S.; Silva, F. M.; Magallanes-Noguera, C. A.; Kurina-Sanz, M.; dos Santos, E. G.; Caldas, I. S.; Luiz, J. H. H.; Silva, E. d O. Natural Trypanocidal Product Produced by Endophytic Fungi Through Co-Culturing. Folia Microbiol. 2020, 65, 323–328.
  • Ho, R.; Violette, A.; Cressend, D.; Raharivelomanana, P.; Carrupt, P. A.; Hostettmann, K. Antioxidant Potential and Radical Scavenging Effects of Flavonoids from the Leaves of Psidium Cattleianum Grown in French Polynesia. Nat. Prod. Res. 2012, 26, 274–277.
  • Re, R.; Nicoletta, P.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity is Applying an Improved ABTS Radical Cation Decolorization Assay. Free Rad. Bio. Med. 1999, 26, 1231–1237.
  • Saxena, S.; Gomber, C. Antimicrobial Potential of Callistemon Rigidus. Pharm. Biol. 2006, 44, 194–201.
  • Gomber, C.; Saxena, S. Anti-Staphylococcal Potential of Callistemon Rigidus. Cent. Eur. J. Med. 2007, 2, 79–88.
  • Stone, J. K.; Bacon, C. W.; White, J. F. An Overview of Endophytic Microbes: Endophytism Defined. In Microbial Endophytes; Bacon, C. W., White Jr., J. F., Eds.; Marcel Dekker, Inc.: New York, 2000; pp. 3–29.
  • Aly, A. H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal Endophytes from Higher Plants: A Prolific Source of Phytochemicals and Other Bioactive Natural Products. Fungal Diversity. 2010, 41, 1–16.
  • Kusari, S.; Hertweck, C.; Spiteller, M. Chemical Ecology of Endophytic Fungi: origins of Secondary Metabolites. Chem. Biol. 2012, 19, 792–798.
  • Jamwal, V. L.; Gandhi, S. G. Endophytes as a Source of High-Value Phytochemicals: Present Scenario and Future Outlook. In: Endophytes and Secondary Metabolites; Jha, S. Eds.; Springer: Cham, 2019.
  • Kumar, J.; Sharma, V. K.; Singh, D. K.; Mishra, A.; Gond, S. K.; Verma, S. K.; Kumar, A.; Kharwar, R. N. Epigenetic Activation of Antibacterial Property of an Endophytic Streptomyces coelicolor Strain AZRA 37 and Identification of the Induced Protein Using MALDI TOF MS/MS. PLOS One. 2016, 11, e0147876.
  • Hassan, S. R. U.; Strobel, G. A.; Booth, E.; Knighton, B.; Floerchinger, C.; Sears, J. Modulation of Volatile Organic Compound Formation in the Mycodiesel-Producing Endophyte Hypoxylon sp. CI-4. Microbiology. 2012, 158, 465–473.
  • Abdulla, A.; Zhao, X.; Yang, F. Natural Polyphenols Inhibits Lysine-Specific Demethylase-1 in Vitro. J Biochem. Pharmacol. Res. 2013, 1, 56–63.
  • Mostert, L.; Crous, P. W.; Petrini, O. Endophytic Fungi Associated with Shoots and Leaves of Vitis vinifera, with Specific Reference to the Phomopsis Viticola Complex. Sydowia. 2000, 52, 46–58.
  • Roopa, G.; Madhusudhan, M. C.; Sunil, K. C. R.; Lisa, N.; Calvin, R.; Poornima, R.; Zeinab, N.; Kini, K. R.; Prakash, H. S.; Geetha, N. Identification of Taxol-Producing Endophytic Fungi Isolated from Salacia Oblonga through Genomic Mining Approach. J. Genet. Eng. Biotechnol. 2015, 13, 119–127.
  • Khanduja, K. L.; Bhardwaj, A. Stable Free Radical Scavenging and anti-Peroxidative Properties of Resveratrol Compared in Vitro with Some Other Bioflavonoids. Indian J. Biochem. Biophy 2003, 40, 416–422.
  • Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol Content and Antioxidant Properties of Underutilized Fruits. J. Food Sci. Technol. 2015, 52, 383–390.
  • Li, C.; Sarotti, A. M.; Yang, B.; Turkson, J.; Cao, S. A New N-Methoxypyridone from the Co-Cultivation of Hawaiian Endophytic Fungi Camporesia Sambuci FT1061 and Epicoccum Sorghinum FT1062. Molecules. 2017, 22, 1166.
  • Portu, J.; López, R.; Ewald, P.; Santamaria, P.; Winterhalter, P.; Garde-Cerdan, T. Evaluation of Grenache, Graciano and Tempranillo Grape Stilbene Content after Field Applications of Elicitors and Nitrogen Compounds. J. Sci. Food Agric. 2018, 98, 1856–1862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.