368
Views
0
CrossRef citations to date
0
Altmetric
Articles

Drug delivery systems of CoFe2O4/chitosan and MnFe2O4/chitosan magnetic composites

&

References

  • Ilyas, R. A.; Sapuan, S. M. Biopolymers and Biocomposites: Chemistry and Technology. Curr. Anal. Chem. 2020, 16, 500–503. DOI: 10.2174/157341101605200603095311.
  • Liu, J.; Sun, L.; Xu, W.; Wang, Q.; Yu, S.; Sun, J. Current Advances and Future Perspectives of 3D Printing Natural-derived Biopolymers. Carbohydr. Polym. 2019, 207, 297–316. DOI: 10.1016/j.carbpol.2018.11.077.
  • Bilal, M.; Iqbal, H. M. Naturally-derived Biopolymers: Potential Platforms for Enzyme Immobilization. Int. J. Biol. Macromol. 2019, 130, 462–482. DOI: 10.1016/j.ijbiomac.2019.02.152.
  • Bertolino, V.; Cavallaro, G.; Milioto, S.; Lazzara, G. Polysaccharides/Halloysite Nanotubes for Smart Bionanocomposite Materials. Carbohydr. Polym. 2020, 245, 116502. DOI: 10.1016/j.carbpol.2020.116502.
  • George, A.; Sanjay, M. R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A Comprehensive Review on Chemical Properties and Applications of Biopolymers and Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. DOI: 10.1016/j.ijbiomac.2020.03.120.
  • Moradali, M. F.; Rehm, B. H. Bacterial Biopolymers: From Pathogenesis to Advanced Materials. Nat. Rev. Microbiol. 2020, 18, 195–210. DOI: 10.1038/s41579-019-0313-3.
  • Caracciolo, G.; Vali, H.; Moore, A.; Mahmoudi, M. Challenges in Molecular Diagnostic Research in Cancer Nanotechnology. Nano Today 2019, 27, 6–10. DOI: 10.1016/j.nantod.2019.06.001.
  • Cheah, W. Y.; Show, P. L.; Ng, I. S.; Lin, G. Y.; Chiu, C. Y.; Chang, Y. K. Antibacterial Activity of Quaternized Chitosan Modified Nanofiber Membrane. Int. J. Biol. Macromol. 2019, 126, 569–577.
  • Islam, N.; Dmour, I.; Taha, M. O. Degradability of Chitosan Micro/Nanoparticles for Pulmonary Drug Delivery. Heliyon 2019, 5, e01684. DOI: 10.1016/j.heliyon.2019.e01684.
  • Leso, V.; Fontana, L.; Iavicoli, I. Biomedical Nanotechnology: Occupational Views. Nano Today 2019, 24, 10–14. DOI: 10.1016/j.nantod.2018.11.002.
  • Nguyen, N. T. P.; Nguyen, L. V. H.; Thanh, N. T.; Toi, V. V.; Ngoc Quyen, T.; Tran, P. A.; David Wang, H. M.; Nguyen, T. H. Stabilization of Silver Nanoparticles in Chitosan and Gelatin Hydrogel and Its Applications. Mater. Lett. 2019, 248, 241–245. DOI: 10.1016/j.matlet.2019.03.103.
  • Sah, A. K.; Dewangan, M.; Suresh, P. K. Potential of Chitosan-based Carrier for Periodontal Drug Delivery. Coll. Surf. B Biointerf. 2019, 178, 185–198. DOI: 10.1016/j.colsurfb.2019.02.044.
  • Zhang, E.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Li, P. Advances in Chitosan-based Nanoparticles for Oncotherapy. Carbohydr. Polym. 2019, 222, 115004. DOI: 10.1016/j.carbpol.2019.115004.
  • Cavallaro, G.; Micciulla, S.; Chiappisi, L.; Lazzara, G. Chitosan-based Smart Hybrid Materials: A Physico-chemical Perspective. J. Mater. Chem. B. 2021, 9, 594–611.
  • Ménager, C.; Sandre, O.; Mangili, J.; Cabuil, V. Preparation and Swelling of Hydrophilic Magnetic Microgels. Polymer 2004, 45, 2475–2481. DOI: 10.1016/j.polymer.2004.02.018.
  • Sahiner, N.; Demir, S.; Yildiz, S. Magnetic Colloidal Polymeric Ionic Liquid Synthesis and Use in Hydrogen Production. Coll. Surf. A 2014, 449, 87–95. DOI: 10.1016/j.colsurfa.2014.02.046.
  • Hernández, R.; Mijangos, C. In Situ Synthesis of Magnetic Iron Oxide Nanoparticles in Thermally Responsive Alginate‐Poly (N‐Isopropylacrylamide) Semi‐Interpenetrating Polymer Networks. Macromol. Rapid Commun. 2009, 30, 176–181. DOI: 10.1002/marc.200800602.
  • Fan, L.; Luo, C.; Lv, Z.; Lu, F.; Qiu, H. Removal of Ag + from Water Environment Using a Novel Magnetic Thiourea-chitosan Imprinted Ag+. J. Hazard. Mater. 2011, 194, 193–201.
  • Chen, C.; Hu, J.; Shao, D.; Li, J.; Wang, X. Adsorption Behavior of Multiwall Carbon Nanotube/Iron Oxide Magnetic Composites for Ni (II) and Sr (II). J. Hazard. Mater. 2009, 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.
  • Kumar, C. S. S. R.; Mohammad, F. Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808.
  • Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X. J. Biomedical Nanomaterials for Imaging-guided Cancer Therapy. Nanoscale 2012, 4, 6135–6149. DOI: 10.1039/c2nr31715j.
  • Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. DOI: 10.1021/acs.chemrev.7b00258.
  • Gong, L.; Yan, L.; Zhou, R.; Xie, J.; Wu, W.; Gu, Z. Two-dimensional Transition Metal Dichalcogenide Nanomaterials for Combination Cancer Therapy. J. Mater. Chem. B. 2017, 5, 1873–1895. DOI: 10.1039/c7tb00195a.
  • Luo, L.; Shu, R.; Wu, A. Nanomaterial-based Cancer Immunotherapy. J. Mater. Chem. B. 2017, 5, 5517–5531. DOI: 10.1039/C7TB01137G.
  • Elsabahy, M.; Wooley, K. L. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem. Soc. Rev. 2012, 41, 2545–2561.
  • Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-based Nanocarriers for Drug Delivery. Chem. Soc. Rev. 2013, 42, 1147–1235. DOI: 10.1039/c2cs35265f.
  • Delplace, V.; Couvreur, P.; Nicolas, J. Recent Trends in the Design of Anticancer Polymer Prodrug Nanocarriers. Polym. Chem. 2014, 5, 1529–1544. DOI: 10.1039/C3PY01384G.
  • Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M. Iron Oxide Nanoparticles for Magnetically-guided and Magnetically-responsive Drug Delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101. DOI: 10.3390/ijms16048070.
  • Lartigue, L.; Alloyeau, D.; Kolosnjaj-Tabi, J.; Javed, Y.; Guardia, P.; Riedinger, A.; Pechoux, C.; Pellegrino, T.; Wilhelm, C.; Gazeau, F. Biodegradation of Iron Oxide Nanocubes: High-resolution in Situ Monitoring. ACS Nano. 2013, 7, 3939–3952.
  • Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. M. In Vivo Delivery, Pharmacokinetics, Biodistribution and Toxicity of Iron Oxide Nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607. DOI: 10.1039/c5cs00541h.
  • Prasad, N. K.; Rathinasamy, K.; Panda, D.; Bahadur, D. Mechanism of Cell Death Induced by Magnetic Hyperthermia with Nanoparticles of γ-MnxFe2–xO3 Synthesizedby a Single Step Process. J. Mater. Chem. 2007, 17, 5042–5051. DOI: 10.1039/b708156a.
  • Ito, A.; Matsuoka, F.; Honda, H.; Kobayashi, T. Heat Shock Protein 70 Gene Therapy Combined with Hyperthermia Using Magnetic Nanoparticles. Cancer Gene Ther. 2003, 10, 918–925. DOI: 10.1038/sj.cgt.7700648.
  • Wang, D. S.; Li, J. G.; Li, H. P.; Tang, F. Q. Preparation and Drug Releasing Property of Magnetic Chitosan-5-Fluorouracil Nano-particles. Trans. Nonferrous Met. Soc. China 2009, 19, 1232–1236. DOI: 10.1016/S1003-6326(08)60434-3.
  • Anirudhan, T. S.; Christa, J. pH and Magnetic Field Sensitive Folic Acid Conjugated Protein–Polyelectrolyte Complex for the Controlled and Targeted Delivery of 5-Fluorouracil. J. Ind. Eng. Chem. 2018, 57, 199–207.
  • Amini-Fazl, M. S.; Mohammadi, R.; Kheiri, K. 5-Fluorouracil Loaded Chitosan/Polyacrylic Acid/Fe3O4 Magnetic Nanocomposite Hydrogel as a Potential Anticancer Drug Delivery System. Int. J. Biol. Macromol. 2019, 132, 506–513. DOI: 10.1016/j.ijbiomac.2019.04.005.
  • Hariharan, M. S.; Sivaraj, R.; Ponsubha, S.; Jagadeesh, R.; Enoch, I. V. M. V. 5-Fluorouracil-Loaded β-Cyclodextrin-carrying Polymeric Poly (Methylmethacrylate)-Coated Samarium Ferrite Nanoparticles and Their Anticancer Activity. J. Mater. Sci. 2019, 54, 4942–4951. DOI: 10.1007/s10853-018-3161-z.
  • Yusefi, M.; Lee-Kiun, M. S.; Shameli, K.; Teow, S.-Y.; Ali, R. R.; Siew, K.-K.; Chan, H.-Y.; Wong, M. M.-T.; Lim, W.-L.; Kuča, K. 5-Fluorouracil Loaded Magnetic Cellulose Bionanocomposites for Potential Colorectal Cancer Treatment. Carbohydr. Polym. 2021, 273, 118523. DOI: 10.1016/j.carbpol.2021.118523.
  • Reddy, M. P.; Mohamed, A. M. A.; Zhou, X. B.; Du, S.; Huang, Q. A Facile Hydrothermal Synthesis, Characterization and Magnetic Properties of Mesoporous CoFe2O4 Nanospheres. J. Magn. Magn. Mater. 2015, 388, 40–44. DOI: 10.1016/j.jmmm.2015.04.009.
  • Amiri, M.; Akbari, A.; Ahmadi, M.; Pardakhti, A.; Salavati-Niasari, M. Synthesis and in Vitro Evaluation of a Novel Magnetic Drug Delivery System; Proecological Method for the Preparation of CoFe2O4 Nanostructures. J. Mol. Lıq. 2018, 249, 1151–1160. DOI: 10.1016/j.molliq.2017.11.133.
  • Jardim, K. V.; Palomec-Garfias, A. F.; Andrade, B. Y. G.; Chaker, J. A.; Báo, S. N.; Márquez-Beltrán, C.; Moya, S. E.; Parize, A. L.; Sousa, M. H. Novel Magneto-responsive Nanoplatforms Based on MnFe2O4 Nanoparticles Layer-by-Layer Functionalized with Chitosan and Sodium Alginate for Magnetic Controlled Release of Curcumin. Mater. Sci. Eng. C. Mater. Biol. Appl. 2018, 92, 184–195. DOI: 10.1016/j.msec.2018.06.039.
  • Dai, Y.; Li, P.; Zhang, J.; Wang, A.; Wei, Q. Swelling Characteristics and Drug Delivery Properties of Nifedipine-loaded pH Sensitive Alginate-chitosan hydrogel beads. J. Biomed. Mater. Res. B. Appl. Biomater. 2008, 86, 493–500. DOI: 10.1002/jbm.b.31046.
  • Korsmeyer, R. W.; Peppas, N. A. Controlled Release Delivery Systems; Mayne Pharma, New York, NY, 1983.
  • Higuchi, T. Mechanism of Sustained-action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharm. Sci. 1963, 52, 1145–1149. DOI: 10.1002/jps.2600521210.
  • Kitazawa, S.; Johno, I.; Ito, Y.; Tokuzo, M.; Okada, J. Interpretation of Dissolution Rate Data from In Vitro Testing of Compressed Tablets. J. Pharm. Pharmacol. 1977, 29, 453–459. DOI: 10.1111/j.2042-7158.1977.tb11368.x.
  • Varelas, C. G.; Dixon, D. G.; Steiner, C. Zero-order Release Fromstudies. II. Dissolution of Particles under Conditions of Rapid Agitation.biphasic Polymer Hydrogels. J. Contr. Rel. 1995, 34, 185–192. DOI: 10.1016/0168-3659(94)00085-9.
  • Kim, D. H.; Nikles, D. E.; Brazel, C. S. Synthesis and Characterization of Multifunctional Chitosan- MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials 2010, 3, 4051–4065. DOI: 10.3390/ma3074051.
  • Pooresmaeil, M.; Javanbakht, S.; Nia, S. B.; Namazi, H. Carboxymethyl Cellulose/Mesoporous Magnetic Graphene Oxide as a Safe and Sustained Ibuprofen Delivery Bio-system: Synthesis, Characterization, and Study of Drug Release Kinetic. Coll. Surf. A. 2020, 594, 124662. DOI: 10.1016/j.colsurfa.2020.124662.
  • Soumia, A.; Adel, M.; Amina, S.; Bouhadjar, B.; Amal, D.; Farouk, Z.; Abdelkader, B.; Mohamed, S. Fe3O4-Alginate Nanocomposite Hydrogel Beads Material: One-Pot Preparation, Release Kinetics and Antibacterial Activity. Int. J. Biol. Macromol. 2020, 145, 466–475. DOI: 10.1016/j.ijbiomac.2019.12.211.
  • Supramaniam, J.; Adnan, R.; Kaus, N. H. M.; Bushra, R. Magnetic Nanocellulose Alginate Hydrogel Beads as Potential Drug Delivery System. Int. J. Biol. Macromol. 2018, 118, 640–648. DOI: 10.1016/j.ijbiomac.2018.06.043.
  • Wang, G.; Zhao, D.; Li, N.; Wang, X.; Ma, Y. Drug-loaded Poly (ε-Caprolactone)/Fe3O4 Composite Microspheres for Magnetic Resonance Imaging and Controlled Drug Delivery. J. Magn. Magn. Mater. 2018, 456, 316–323. DOI: 10.1016/j.jmmm.2018.02.053.
  • Chen, F. H.; Zhang, L. M.; Chen, Q. T.; Zhang, Y.; Zhang, Z. J. Synthesis of a Novel Magnetic Drug Delivery System Composed of Doxorubicin-conjugated Fe3O4 Nanoparticle Cores and a PEG-functionalized Porous Silica Shell. Chem. Commun. 2010, 46, 8633–8635. DOI: 10.1039/c0cc02577a.
  • Kayal, S.; Ramanujan, R. V. Doxorubicin Loaded PVA Coated Iron Oxide Nanoparticles for Targeted Drug Delivery. Mat. Scı. Eng. C-Mater. 2010, 30, 484–490. DOI: 10.1016/j.msec.2010.01.006.
  • Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Zhang, J.; Dong, W. Design of a pH-sensitive Magnetic Composite Hydrogel Based on Salecan Graft Copolymer and Fe3O4@SiO2 Nanoparticles as Drug Carrier. Int. J. Biol. Macromol. 2018, 107, 1811–1820. DOI: 10.1016/j.ijbiomac.2017.10.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.