331
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Cordyceps militaris on formation of short-chain fatty acids as postbiotic metabolites

&

References

  • Nataraj, B. H.; Ali, S. A.; Behare, P. V.; Yadav, H. Postbiotics-Parabiotics: The New Horizons in Microbial Biotherapy and Functional Foods. Microb. Cell Fact 2020, 1, 168.
  • Siciliano, R. A.; Reale, A.; Mazzeo, M. F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021, 13, 1225. DOI: 10.3390/nu13041225.
  • Hill, C.; Guarner, F.; Reid, G.; Gibson, G. R.; Merenstein, D. J.; Pot, B.; Morelli, L.; Canani, R. B.; Flint, H. J.; Salminen, S.; et al. Expert Consensus Document. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. DOI: 10.1038/nrgastro.2014.66.
  • Gibson, G. R.; Hutkins, R.; Sanders, M. E.; Prescott, S. L.; Reimer, R. A.; Salminen, S. J.; Scott, K.; Stanton, C.; Swanson, K. S.; Cani, P. D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the de Finition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. DOI: 10.1038/nrgastro.2017.75.
  • Usta-Gorgun, B.; Yilmaz-Ersan, L. Short-Chain Fatty Acids Production by Bifidobacterium Species in the Presence of Salep. Electron. J. Biotechnol. 2020, 47, 29–35. DOI: 10.1016/j.ejbt.2020.06.004.
  • Campos-Perez, W.; Martinez-Lopez, E. Effects of Short Chain Fatty Acids on Metabolic and Inflammatory Processes in Human Health. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 2021, 1866, 158900. DOI: 10.1016/j.bbalip.2021.158900.
  • Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, K. Short Chain Fatty Acids and Its Producing Organisms: An Overlooked Therapy for IBD? EBioMedicine 2021, 66, 103293. DOI: 10.1016/j.ebiom.2021.103293.
  • Nogal, A.; Valdes, A. M.; Menni, C. The Role of Short-Chain Fatty Acids in the Interplay between Gut Microbiota and Diet in Cardio-Metabolic Health. Gut Microbes 2021, 13, 1–24. DOI: 10.1080/19490976.2021.1897212.
  • Tian, Y.; Zeng, H.; Xu, Z.; Zheng, B.; Lin, Y.; Gan, C.; Lo, Y. M. Ultrasonic-Assisted Extraction and Antioxidant Activity of Polysaccharides Recovered from White Button Mushroom (Agaricus Bisporus). Carbohydr. Polym. 2012, 88, 522–529. DOI: 10.1016/j.carbpol.2011.12.042.
  • Chou, W. T.; Sheih, I. C.; Fang, T. J. The Applications of Polysaccharides from Various Mushroom Wastes as Prebiotics in Different Systems. J. Food Sci. 2013, 78, 1041–1048.
  • Friedman, M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer and Antibiotic Properties in Cells, Rodents and Humans. Foods 2016, 5, 80–40. DOI: 10.3390/foods5040080.
  • Sawangwan, T.; Wansanit, W.; Pattani, L.; Noysang, C. Study of Prebiotic Properties from Edible Mushroom Extraction. Agric. Nat. Resour. 2018, 52, 519–524.
  • Ferrão, J.; Bell, V.; Chaquisse, E.; Garrine, C.; Fernandes, T. The Synbiotic Role of Mushrooms: Is Germanium a Bioactive Prebiotic Player. Am. J. Food Nutr. 2019, 7, 26–35.
  • Bandara, A. R.; Rapior, S.; Mortimer, P. E.; Kakumyan, P.; Hyde, K. D.; Xu, J. A Review of the Polysaccharide, Protein and Selected Nutrient Content of Auricularia, and Their Potential Pharmacological Value. Mycosphere 2019, 10, 579–607. DOI: 10.5943/mycosphere/10/1/10.
  • Synytsya, A.; Mickova, K.; Synytsya, A.; Jablonsky, I.; Slukova, M.; Copikova, J. Mushrooms of Genus Pleurotus as a Source of Dietary Fibres and Glucans for Food Supplements. Czech J. Food Sci. 2009, 26, 441–446. DOI: 10.17221/1361-CJFS.
  • Yamin, S.; Shuhaimi, M.; Arbakariya, A.; Fatimah, A. B.; Khalilah, A. K.; Anas, O.; Yazid, A. M. Effect of Ganoderma lucidum Polysaccharides on the Growth of Bifidobacterium Spp. as Assessed Using Real-Time PCR. Int. Food Res. J. 2012, 19, 1199–1205.
  • Chaikliang, C.; Wichienchot, S.; Youravoug, W.; Graidist, P. Evaluation on Prebiotic Properties of β-Glucan and Oligo-β-Glucan from Mushrooms by Human Fecal Microbiota in Fecal Batch Culture. Funct Food Healh Dis. 2015, 5, 395–405. DOI: 10.31989/ffhd.v5i11.209.
  • Jabłońska-Ryś, E.; Sławińska, A.; Radzki, W.; Gustaw, W. Evaluation of the Potential Use of Probiotic Strain Lactobacillus plantarum 299v in Lactic Fermentation of Button Mushroom Fruıtıng bodies. Acta Sci. Pol. Technol. Aliment. 2016, 15, 399–407. DOI: 10.17306/J.AFS.2016.4.38.
  • Liu, Y.-H.; Lin, Y.-S.; Lin, K.-L.; Lu, Y.-L.; Chen, C.-H.; Chien, M.-Y.; Shang, H.-F.; Lin, S.-Y.; Hou, W.-C. Effects of Hot-Water Extracts from Ganoderma lucidum Residues and Solid-State Fermentation Residues on Prebiotic and Immune-Stimulatory Activities in Vitro and the Powdered Residues Used as Broiler Feed Additives in Vivo. Bot. Stud. 2015, 56, 17–18. DOI: 10.1186/s40529-015-0097-3.
  • Kawakami, S.; Araki, T.; Ohba, K.; Sasaki, K.; Kamada, T.; Shimada, K. I.; Han, K. H.; Fukushima, M. Comparison of the Effect of Two Types of Whole Mushroom (Agaricus Bisporus) Powders on Intestinal Fermentation in Rats. Biosci. Biotechnol. Biochem. 2016, 80, 2001–2006. DOI: 10.1080/09168451.2016.1196573.
  • Meneses, M. E.; Martínez-Carrera, D.; Torres, N.; Sánchez-Tapia, M.; Aguilar-López, M.; Morales, P.; Sobal, M.; Bernabé, T.; Escudero, H.; Granados-Portillo, O.; Tovar, A. R. Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice. Plos One. 2016, 11, e0159631. DOI: 10.1371/journal.pone.0159631.
  • Saman, P.; Chaiongkarn, A.; Moonmangmee, S.; Sukcharoen, J.; Kuancha, C.; Fungsin, B. Evaluation of Prebiotic Property in Edible Mushrooms. Biol. Chem. 2016, 3, 75–85.
  • Tupamahu, I. P. C.; Budiarso, T. Y. The Effect of Oyster Mushroom (Pleurotus ostreatus) Powder as Prebiotic Agent on Yoghurt Quality. AIP Conf. Proc. 2017, 30, 191–201.
  • Khan, I.; Huang, G.; Li, X.; Leong, W.; Xia, W.; Hsiao, W. Mushroom Polysaccharides from Ganoderma lucidum and Poria Cocos Reveal Prebiotic Functions. J. Funct. Food. 2018, 41, 191–201. DOI: 10.1016/j.jff.2017.12.046.
  • Mallik, B. P.; Bhawsar, H. Evaluation of Prebiotic Score of Edible Mushroom Extract. Int. J. Eng. Res. 2018, 7, 122–127.
  • Das, S. K.; Masuda, M.; Sakurai, A.; Sakakibara, M. Medicinal Uses of the Mushroom Cordyceps militaris: Current State and Prospects. Fitoterapia 2010, 81, 961–968. DOI: 10.1016/j.fitote.2010.07.010.
  • Patel, S.; Goyal, A. The Current Trends and Future Perspectives of Prebiotics Research: A Review. 3 Biotech 2012, 2, 115–125.
  • Tuli, H. S.; Sandhu, S. S.; Sharma, A. K. Pharmacological and Therapeutic Potential of Cordyceps with Special Reference to Cordycepin. 3 Biotech 2014, 4, 1–12. DOI: 10.1007/s13205-013-0121-9.
  • Dong, C.; Yang, T.; Lian, T. A Comparative Study of the Antimicrobial, Antioxidant, and Cytotoxic Activities of Methanol Extracts from Fruit Bodies and Fermented Mycelia of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms 2014, 16, 485–495. DOI: 10.1615/intjmedmushrooms.v16.i5.70.
  • Ueda, Y.; Mori, K.; Satoh, S.; Dansako, H.; Ikeda, M.; Kato, N. Anti-HCV Activity of the Chinese Medicinal Fungus Cordyceps militaris. Biochem. Biophys. Res. Commun. 2014, 447, 341–345. DOI: 10.1016/j.bbrc.2014.03.150.
  • Bawadekji, A.; Ali, K. A.; Ali, M. A. A Review of the Bioactive Compound and Medicinal Value of Cordyceps militaris. J. North Basic Appl. Sci. 2016, 1, 69–76. DOI: 10.12816/0021378.
  • Mani, A.; Thawani, V.; Zaidi, K. An Effective Approach of Strain Improvement in Cordyceps militaris Using Abrin. Curr. Res. Environ. Appl. 2016, 6, 166–172.
  • Sun, J.-Z. U.; Dong, C.-H.; Liu, X.-Z.; Liu, J.-K.; Hyde, K. D. Calcarisporium Cordycipiticola sp. nov., an Important Fungal Pathogen of Cordyceps militaris. Phytotaxa 2016, 268, 135–144. DOI: 10.11646/phytotaxa.268.2.4.
  • Lee, H. H.; Kang, N.; Park, I.; Park, J.; Kim, I.; Kim, J.; Kim, N.; Lee, J.-Y.; Seo, Y.-S. Characterization of Newly Bred Cordyceps militaris Strains for Higher Production of Cordycepin through HPLC and URP-PCR Analysis. J. Microbiol. Biotechnol. 2017, 27, 1223–1232. DOI: 10.4014/jmb.1701.01043.
  • Mehra, A.; Zaidi, K. U.; Mani, A.; Thawani, V. The Health Benefits of Cordyceps militaris – A Review. Kavaka 2017, 48, 27–32.
  • Panicker, S. Cordyceps the Fungal gold—A Review. Air. 2017, 11, 1–16. DOI: 10.9734/AIR/2017/35923.
  • Takakura, K.; Ito, S.; Sonoda, J.; Tabata, K.; Shiozaki, M.; Nagai, K.; Shibata, M.; Koike, M.; Uchiyama, Y.; Gotow, T. Cordyceps militaris Improves the Survival of Dahl Salt-Sensitive Hypertensive Rats Possibly via Influences of Mitochondria and Autophagy Functions. Heliyon 2017, 3, e00462-24. DOI: 10.1016/j.heliyon.2017.e00462.
  • Chao, S. C.; Chang, S. L.; Lo, H. C.; Hsu, W. K.; Lin, Y. T.; Hsu, T. H. Enhanced Production of Fruiting Body and Bioactive Ingredients of Cordyceps militaris with LED Light Illumination Optimization. J. Agric. Sci. Technol. 2019, 2, 451–462.
  • Wellham, P. A. D.; Kim, D.-H.; Brock, M.; de Moor, C. H. Coupled Biosynthesis of Cordycepin and Pentostatin in Cordyceps militaris: Implications for Fungal Biology and Medicinal Natural Products. Ann. Transl. Med. 2019, 7, S85–S86. DOI: 10.21037/atm.2019.04.25.
  • Usta, B.; Yilmaz-Ersan, L. Evaluation of Prebiotic Potential of Salep Obtained from Some Orchidaceae Species. Fresenius Environ. Bull. 2017, 26, 6191–6198.
  • Tharmaraj, N.; Shah, N. P. Selective Enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. J. Dairy Sci. 2003, 86, 2288–2296. DOI: 10.3168/jds.S0022-0302(03)73821-1.
  • Azmi, A. F. M. N.; Mustafa, S.; Hashim, D. M.; Manap, Y. A. Prebiotic Activity of Polysaccharides Extracted from Gigantochloa Levis (Buluh Beting) Shoots. Molecules 2012, 17, 1635–1651. DOI: 10.3390/molecules17021635.
  • Huebner, J.; Wehling, R. L.; Parkhurst, A.; Hutkins, R. W. Effect of Processing Conditions on the Prebiotic Activity of Commercial Prebiotics. Int. Dairy J. 2008, 18, 287–293. DOI: 10.1016/j.idairyj.2007.08.013.
  • Fiori, J.; Turroni, S.; Candela, M.; Brigidi, P.; Gotti, R. Simultaneous HS-SPME GC-MS Determination of Short Chain Fatty Acids, Trimethylamine and Trimethylamine N-Oxide for Gut Microbiota Metabolic Profile. Talanta 2018, 189, 573–578574. DOI: 10.1016/j.talanta.2018.07.051.
  • Andriy, S.; Katerina, M.; Alla, S.; Ivan, J.; Jirí, S.; Vladimír, E.; Eliška, K.; Jana, C. Glucans from Fruit Bodies of Cultivated Mushrooms Pleurotus ostreatus and Pleurotus Eryngii: Structure and Potential Prebiotic Activity. Carbohydr. Polym. 2009, 76, 548–556.
  • Nowak, R.; Nowacka-Jechalke, N.; Juda, M.; Malm, A. The Preliminary Study of Prebiotic Potential of Polish Wild Mushroom Polysaccharides: The Stimulation Effect on Lactobacillus Strains Growth. Eur. J. Nutr. 2018, 57, 1511–1521. DOI: 10.1007/s00394-017-1436-9.
  • Freitas, C.; Antunes, M. B.; Rodrigues, D.; Sousa, S.; Amorim, M.; Barroso, M. F.; Carvalho, A.; Ferrador, S. M.; Gomes, A. M. Use of Coffee by-Products for the Cultivation of Pleurotus Citrinopileatus and Pleurotus Salmoneo-Stramineus and Its Impact on Biological Properties of Extracts Thereof. Int. J. Food Sci. Technol. 2018, 53, 1914–1924. DOI: 10.1111/ijfs.13778.
  • Mleczek, M.; Magdziak, Z.; Gąsecka, M.; Niedzielski, P.; Kalač, P.; Siwulski, M.; Rzymski, P.; Zalicka, S.; Sobieralski, K. Content of Selected Elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas. Environ. Sci. Pollut. Res. Int. 2016, 23, 20609–20618. DOI: 10.1007/s11356-016-7222-z.
  • Gąsecka, M.; Magdziak, Z.; Siwulski, M.; Mleczek, M. Profile of Phenolic and Organic Acids, Antioxidant Properties and Ergosterol Content in Cultivated and Wild Growing Species of Agaricus. Eur. Food Res. Technol. 2018, 244, 259–268. DOI: 10.1007/s00217-017-2952-9.
  • Chen, Z.; Fang, X.; Wu, W.; Chen, H.; Han, Y.; Yang, H.; Gao, H. Effects of Fermentation with Lactiplantibacillus Plantarum GDM1.191 on the Umami Compounds in Shiitake Mushrooms (Lentinus Edodes). Food Chem. 2021, 364, 130398. DOI: 10.1016/j.foodchem.2021.130398.
  • Tian, Y.; Nichols, R. G.; Roy, P.; Gui, W.; Smith, P. B.; Zhang, J.; Lin, Y.; Weaver, V.; Cai, J.; Patterson, A. D.; Cantorna, M. T. Prebiotic Effects of White Button Mushroom (Agaricus Bisporus) Feeding on Succinate and Intestinal Gluconeogenesis in C57BL/6 Mice. J. Funct. Foods 2018, 45, 223–232. DOI: 10.1016/j.jff.2018.04.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.