413
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of lactic acid production by pressurized liquid hot water from cultivated Miscanthus × giganteus

ORCID Icon, ORCID Icon & ORCID Icon

References

  • John, R. P.; G.S, A.; Nampoothiri, K. M.; Pandey, A. Direct Lactic Acid Fermentation: Focus on Simultaneous Saccharification and Lactic Acid Production. Biotechnol. Adv. 2009, 27, 145–152.
  • Nguyen, C. M.; Choi, G. J.; Choi, Y. H.; Jang, K. S.; Kim, J. C. D.; Lactic, l. Acid Production from Fresh Sweet Potato Through Simultaneous Saccharification and Fermentation. Biochem. Eng. J. 2013, 81, 40–46.
  • Huang, L. P.; Jin, B.; Lant, P.; Zhou, J. Simultaneous Saccharification and Fermentation of Potato Starch Wastewater to Lactic Acid by Rhizopus Oryzae and Rhizopus Arrhizus. Biochem. Eng. J. 2005, 23, 265–276.
  • Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and Role of Polylactic Acid-Degrading Bacteria on Degrading Enzymes Productions and PLA Biodegradability at Mesophilic Conditions. Polym. Degrad. Stab 2018, 152, 75–85.
  • Jong, E.; Stichnothe, H.; Bell, G.; Jorgensen, H. Bio-Based Chemicals: A 2020 Update. IEA Bioenergy Task 42 Biorefinery. 2020.
  • Kalita, N. K.; Damare, N. A.; Hazarika, D.; Bhagabati, P.; Kalamdhad, A.; Katiyar, V. Biodegradation and Characterization Study of Compostable PLA Bioplastic Containing Algae Biomass as Potential Degradation Accelerator. Environ. Challenges 2021, 3, 100067.
  • Schmid, M.; Beirow, M.; Schweitzer, D.; Waizmann, G.; Spörl, R.; Scheffknecht, G. Product Gas Composition for Steam-Oxygen Fluidized Bed Gasification of Dried Sewage Sludge, Straw Pellets and Wood Pellets and the Influence of Limestone as Bed Material. Biomass Bioenergy 2018, 117, 71–77.
  • Nwamba, M. C.; Sun, F.; Mukasekuru, M. R.; Song, G.; Harindintwali, J. D.; Boyi, S. A.; Sun, H. Trends and Hassles in the Microbial Production of Lactic Acid from Lignocellulosic Biomass. Environ. Tech. Innovat. 2021, 21, 101337.
  • Zetterholm, J.; Bryngemark, E.; Ahlström, J.; Söderholm, P.; Harvey, S.; Wetterlund, E. Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models. Sustain. 2020, 12, 7126.
  • Liu, J.; Li, R.; Shuai, L.; You, J.; Zhao, Y.; Chen, L.; Li, M.; Chen, L.; Huang, L.; Luo, X. Comparison of Liquid Hot Water (LHW) and High Boiling Alcohol/Water (HBAW) Pretreatments for Improving Enzymatic Saccharification of Cellulose in Bamboo. Ind. Crops Prod. 2017, 107, 139–148.
  • Yoon, J.; Sim, S.; Myint, A. A.; Lee, Y. W. Kinetics of the Hydrolysis of Xylan Based on Ether Bond Cleavage in Subcritical Water. J. Supercrit. Fluids. 2018, 135, 145–151.
  • Getachew, A. T.; Cho, Y. J.; Chun, B. S. Effect of Pretreatments on Isolation of Bioactive Polysaccharides from Spent Coffee Grounds Using Subcritical Water. Int. J. Biol. Macromol. 2018, 109, 711–719.
  • Das, N.; Jena, P. K.; Padhi, D.; Kumar Mohanty, M.; Sahoo, G. A Comprehensive Review of Characterization, Pretreatment and Its Applications on Different Lignocellulosic Biomass for Bioethanol Production. Biomass Conv. Bioref. 2021.DOI: 10.1007/s13399-021-01294-3
  • Cubas-Cano, E.; López-Gómez, J. P.; González-Fernández, C.; Ballesteros, I. Tomás-Pejó, E. Towards Sequential Bioethanol and L-Lactic Acid Co-Generation: Improving Xylose Conversion to L-Lactic Acid in Presence of Lignocellulosic Ethanol with an Evolved Bacillus Coagulans. Renew. Energy. 2020, 153, 759–765.
  • Coban, I.; Sargin, S.; Celiktas, M. S.; Yesil-Celiktas, O. Bioethanol Production from Raffinate Phase of Supercritical CO2 Extracted Stevia Rebaudiana Leaves. Bioresour. Technol. 2012, 120, 52–59.
  • Celiktas, M. S.; Kirsch, C.; Smirnova, I. Cascade Processing of Wheat Bran through a Biorefinery Approach. Energy Convers. Manag. 2014, 84, 633–639.
  • Abdel-Rahman, M. A.; Tashiro, Y.; Sonomoto, K. Lactic Acid Production from Lignocellulose-Derived Sugars Using Lactic Acid Bacteria: Overview and Limits. J. Biotechnol. 2011, 156, 286–301.
  • Pilavtepe, M.; Celiktas, M. S.; Sargin, S.; Yesil-Celiktas, O. Yesil-Celiktas, O. Transformation of Posidonia Oceanica Residues to Bioethanol. Ind. Crops Prod. 2013, 51, 348–354.
  • Soccol, C. R.; Costa, E. S. F.; da Letti, L. A. J.; Karp, S. G.; Woiciechowski, A. L.; Vandenberghe, L. P. d S. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1(1), 57–71.
  • Irfan, M.; Asghar, U.; Nadeem, M.; Nelofer, R.; Syed, Q. Optimization of Process Parameters for Xylanase Production by Bacillus Sp. in Submerged Fermentation. J. Radiat. Res. Appl. Sci. 2016, 9(2), 139–147.
  • Zhang, L.; Li, X.; Yong, Q.; Yang, S. T.; Ouyang, J.; Yu, S. Impacts of Lignocellulose-Derived Inhibitors on l-Lactic Acid Fermentation by Rhizopus Oryzae. Bioresour. Technol. 2016, 203, 173–180.
  • Zhang, Z. Y.; Jin, B.; Kelly, J. M. Production of Lactic Acid from Renewable Materials by Rhizopus Fungi. Biochem. Eng. J. 2007, 35, 251–263.
  • Boakye-Boaten, N. A.; Xiu, S.; Shahbazi, A.; Fabish, J. Liquid Hot Water Pretreatment of Miscanthus X Giganteus for the Sustainable Production of Bioethanol. BioResources 2015, 10(3), 5890–5905.
  • Zhang, Y.; Ezeji, T. C. Elucidating and Alleviating Impacts of Lignocellulose-Derived Microbial Inhibitors on Clostridium Beijerinckii during Fermentation of Miscanthus Giganteus to Butanol. J. Ind. Microbiol. Biotechnol. 2014, 41, 1505–1516.
  • Li, H. Q.; Jiang, W.; Jia, J. X.; Xu, J. PH Pre-Corrected Liquid Hot Water Pretreatment on Corn Stover with High Hemicellulose Recovery and Low Inhibitors Formation. Bioresour. Technol. 2014, 153, 292–299.
  • Kazan, A.; Celiktas, M. S.; Sargin, S.; Yesil-Celiktas, O. Bio-Based Fractions by Hydrothermal Treatment of Olive Pomace: Process Optimization and Evaluation. Energy Convers. Manag. 2015, 103, 366–373.
  • Pinto, J. A.; Prieto, M. A.; Ferreira, I. C. F. R.; Belgacem, M. N.; Rodrigues, A. E.; Barreiro, M. F. Analysis of the Oxypropylation Process of a Lignocellulosic Material, Almond Shell, Using the Response Surface Methodology (RSM). Ind. Crops Prod 2020, 153, 112542.
  • Xu, S.; Fang, D.; Tian, X.; Xu, Y.; Zhu, X.; Wang, Y.; Lei, B.; Hu, P.; Ma, L. Subcritical Water Extraction of Bioactive Compounds from Waste Cotton (Gossypium Hirsutum L.) Flowers. Ind. Crops Prod. 2021, 164, 113369.
  • Akay, F.; Kazan, A.; Celiktas, M. S.; Yesil-Celiktas, O. A Holistic Engineering Approach for Utilization of Olive Pomace. J. Supercrit. Fluids. 2015, 99, 1–7.
  • Campos, L. M. A.; Moura, H. O. M. A.; Cruz, A. J. G.; Assumpção, S. M. N.; de Carvalho, L. S.; Pontes, L. A. M. Response Surface Methodology (RSM) for Assessing the Effects of Pretreatment, Feedstock, and Enzyme Complex Association on Cellulose Hydrolysis. Biomass Convers. Biorefinery. 2020. DOI: 10.1007/s13399-020-00756-4
  • Marsden, W.; Gray, P. P.; Nippard, G. J.; Quinlan, M. R. Evaluation of the Dns Method for Analysing Lignocellulosic Hydrolysates. J. Chem. Technol. Biotechnol. 2007, 32, 1016–1022.
  • Madrid, J.; Martinez-Teruel, A.; Hernandez, F.; Megaas, Mia. D. A Comparative Study on the Determination of Lactic Acid in Silage Juice by Colorimetric, High-Performance Liquid Chromatography and Enzymatic Methods. J. Sci. Food Agric. 1999, 79, 1722–1726.
  • Sokullu, E.; Palabiyik, I. M.; Onur, F.; Boyaci, I. H. Chemometric Methods for Simultaneous Quantification of Lactic, Malic and Fumaric Acids. Eng. Life Sci. 2010, 10, 297–303.
  • Uyan, M.; Alptekin, F. M.; Cebi, D.; Celiktas, M. S. Bioconversion of Hazelnut Shell Using near Critical Water Pretreatment for Second Generation Biofuel Production. Fuel. 2020, 273, 117641.
  • Pilavtepe, M.; Sargin, S.; Celiktas, M. S.; Yesil-Celiktas, O. An Integrated Process for Conversion of Zostera Marina Residues to Bioethanol. J. Supercrit. Fluids. 2012, 68, 117–122.
  • Celiktas, M. S.; Yaglikci, M.; Khosravi Maleki, F. Subcritical Water Extraction Derived Lignin for Creation of Sustainable Reinforced Composite Materials. Polym. Test. 2019, 77, 105918.
  • Lu, J.; Liu, H.; Song, F.; Xia, F.; Huang, X.; Zhang, Z.; Cheng, Y.; Wang, H. Combining Hydrothermal-Alkaline/Oxygen Pretreatment of Reed with PEG 6,000-Assisted Enzyme Hydrolysis Promote Bioethanol Fermentation and Reduce Enzyme Loading. Ind. Crops Prod. 2020, 153, 112615.
  • Xue, Y.; Li, Q.; Gu, Y.; Yu, H.; Zhang, Y.; Zhou, X. Improving Biodegradability and Biogas Production of Miscanthus Using a Combination of Hydrothermal and Alkaline Pretreatment. Ind. Crops Prod. 2020, 144, 111985.
  • Zhuang, X.; Wang, W.; Yu, Q.; Qi, W.; Wang, Q.; Tan, X.; Zhou, G.; Yuan, Z. Liquid Hot Water Pretreatment of Lignocellulosic Biomass for Bioethanol Production Accompanying with High Valuable Products. Bioresour. Technol. 2016, 199, 68–75.
  • Światek, K.; Lewandowska, M.; Światek, M.; Bednarski, W.; Brzozowski, B. The Improvement of Enzymatic Hydrolysis Efficiency of Rape Straw and Miscanthus Giganteus Polysaccharides. Bioresour. Technol. 2014, 151, 323–331.
  • Yang, H.; Wang, K.; Ma, J.; Yang, J.; Shi, Z. Liquid Hot Water Pretreatment of Wheat Straw for Full Carbohydrates Biorefinery. BioResources 2017, 12(3), 6342–6352.
  • Boakye-Boaten, N. A.; Xiu, S.; Shahbazi, A.; Wang, L.; Li, R.; Schimmel, K. Uses of Miscanthus Press Juice within a Green Biorefinery Platform. Bioresour. Technol. 2016, 207, 285–292.
  • Maas, R. H. W.; Bakker, R. R.; Eggink, G.; Weusthuis, R. A. Lactic Acid Production from Xylose by the Fungus Rhizopus Oryzae. Appl. Microbiol. Biotechnol. 2006, 72, 861–868.
  • Cizeikiene, D.; Juodeikiene, G.; Damasius, J. Use of Wheat Straw Biomass in Production of L-Lactic Acid Applying Biocatalysis and Combined Lactic Acid Bacteria Strains Belonging to the Genus Lactobacillus. Biocatal. Agric. Biotechnol. 2018, 15, 185–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.