547
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using Pseudomonas putida KT2440

, , &

References

  • Reddy, C. S. K.; Ghai, R.; Rashmi ; Kalia, V. C. Polyhydroxyalkanoates: An Overview. Bioresour. Technol. 2003, 87, 137–146. DOI: 10.1016/S0960-8524(02)00212-2.
  • Manish Kumar, G. J.; Thakur, I. S. Production and Optimization of Polyhydroxyalkanoate from Oleaginous Bacteria Bacillus sp. ISTC1. Res. Rev. J. Microbiol. Biotechnol. 2016, 5, 80–89.
  • Koller, M. Advances in Alkanoate (PHA) Production Edited by Special Issue Editor. Bioengineering 2017, 4, 88. DOI: 10.3390/bioengineering4040088.
  • Tan, G.-Y.; Chen, C.-L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 2014, 6, 706–754. DOI: 10.3390/polym6030706.
  • Cerrone, F.; Choudhari, S. K.; Davis, R.; Cysneiros, D.; O'Flaherty, V.; Duane, G.; Casey, E.; Guzik, M. W.; Kenny, S. T.; Babu, R. P.; O'Connor, K. Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Production from Volatile Fatty Acids Derived from the Anaerobic Digestion of Grass. Appl. Microbiol. Biotechnol. 2014, 98, 611–620. DOI: 10.1007/s00253-013-5323-x.
  • Rai, R.; Keshavarz, T.; Roether, J.; Roy, I.; Boccaccini, A. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Mater. Sci. Eng. R Rep. 2011, 72, 29–47. DOI: 10.1016/j.mser.2010.11.002.
  • Linger, J. G.; Vardon, D. R.; Guarnieri, M. T.; Karp, E. M.; Hunsinger, G. B.; Franden, M. A.; Johnson, C. W.; Chupka, G.; Strathmann, T. T.; Pienkos, P. T.; Beckham, G. T. Lignin Valorization through Integrated Biological Funneling and Chemical Catalysis. Proc. Natl. Acad. Sci. 2014, 111, 1410657111. DOI: 10.1073/pnas.1410657111.
  • Amache, R.; Sukan, A.; Safari, M.; Roy, I.; Keshavarz, T. Advances in PHAs Production. Chem. Eng. Trans. 2011, 32, 931–936. 2013, DOI: 10.3303/CET1332156.
  • Borrero-De Acuña, J. M.; Bielecka, A.; Häussler, S.; Schobert, M.; Jahn, M.; Wittmann, C.; Jahn, D.; Poblete-Castro, I. Production of Medium Chain Length Polyhydroxyalkanoate in Metabolic Flux Optimized Pseudomonas Putida. Microb. Cell Fact. 2014, 13, 88 DOI: 10.1186/1475-2859-13-88. PMC: 24948031
  • Hoffmann, N.; Rehm, B. H. A. Regulation of Polyhydroxyalkanoate Biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2004, 237, 1–7. DOI: 10.1016/j.femsle.2004.06.029.
  • Kumar, M.; Singh, J.; Singh, M. K.; Singhal, A.; Thakur, I. S. Investigating the Degradation Process of Kraft Lignin by β-Proteobacterium, Pandoraea sp. ISTKB. Environ. Sci. Pollut. Res. Int. 2015, 22, 15690–15702. DOI: 10.1007/s11356-015-4771-5.
  • Annuar, M. S. M.; I. Tan, K. P.; Ibrahim, S.; Ramachandran, K. B. Production of Medium-Chain-Length Poly (3-Hydroxyalkanoates) from Saponified Palm Kernel Oil by Pseudomonas putida: Kinetics of Batch and Fed-Batch Fermentations. Malays. J. Microbiol. 2006, 2, 1–9. DOI: 10.21161/mjm.220601.
  • Sohn, S.; B; Kim, T. Y.; Park, J. M.; Lee, S. Y. In Silico Genome-Scale Metabolic Analysis of Pseudomonas putida KT2440 for Polyhydroxyalkanoate Synthesis, Degradation of Aromatics and Anaerobic Survival. Biotechnol. J. 2010, 5, 739–750. DOI: 10.1002/biot.201000124.
  • Yu, J.; Stah, H. Microbial Utilization and Biopolyester Synthesis of Bagasse Hydrolysates. Bioresour. Technol. 2008, 99, 8042–8048. DOI: 10.1016/j.biortech.2008.03.071.
  • Bertrand, J. L.; Ramsay, B. A.; Ramsay, J. A.; Chavarie, C. Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava. Appl. Environ. Microbiol. 1990, 56, 3133–3138. DOI: 10.1128/aem.56.10.3133-3138.1990.
  • Pan, W.; Nomura, C. T.; Nakas, J. P. Estimation of Inhibitory Effects of Hemicellulosic Wood Hydrolysate Inhibitors on PHA Production by Burkholderia cepacia ATCC 17759 Using Response Surface Methodology. Bioresour. Technol. 2012, 125, 275–282. DOI: 10.1016/j.biortech.2012.08.107.
  • Keenan, T.; M; Nakas, J. P.; Tanenbaum, S. W. Polyhydroxyalkanoate Copolymers from Forest Biomass. J. Ind. Microbiol. Biotechnol. 2006, 33, 616–626. DOI: 10.1007/s10295-006-0131-2.
  • Davis, R.; Kataria, R.; Cerrone, F; Woods, T.; Kenny, S.; Donovan, A. O.; Guzik, M.; Shaikh, H.; Duane, G.; Gupta, V.; et al. Conversion of Grass Biomass into Fermentable Sugars and Its Utilization for Medium Chain Length Polyhydroxyalkanoate (mcl-PHA) Production by Pseudomonas Strains. Bioresour. Technol. 2013, 150, 202–209. DOI: 10.1016/j.biortech.2013.10.001.
  • Linger, J. G.; Vardon, D. R.; Guarnieri, T. M.; Karp, E. M.; Hunsinger, G. B.; Franden, M. A.; Johnson, C. W.; Chupka, G.; Strathmann, T. T.; Pienkos, P. T.; Beckham, G. Lignin Valorization through Integrated Biological Funneling and Chemical Catalysis. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 12013–12018. DOI: 10.1073/pnas.1410657111.
  • Asodekar B; Wadekar, P.; C; Patil, P.; S; Patil, M. L.; Lali, A. M. Pure Hydrolyzable Cellulose from Rice Straw, Wheat Straw and Sugarcane Bagasse by a Simple Scalable Two-Step Treatment. Sustain. Chem. Eng. 2021, 2, 1–20. DOI: 10.37256/sce.222021782.
  • Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, A.; Sluiter, J.; Templeton, D. Preparation of Samples for Compositional Analysis Laboratory Analytical Procedure ( LAP ) Issue Date: 8 / 06 / 2008 Preparation of Samples for Compositional Analysis Laboratory Analytical Procedure (LAP). Natl. Renew. Energy Lab. 2008, 1–9.
  • Sluiter, A.; Hames, B.; Hyman. D; Payne. C; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Wolfe, J. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. Natl. Renew. Energy Lab. 2008, 1–9. DOI: NREL/TP-510-42621.
  • Escapa, I. F.; GarcpaR L. J.; B; Jpa, B.; Blank, M. L.; Prieto, A. M. The Polyhydroxyalkanoate Metabolism Controls Carbon and Energy Spillage in Pseudomonas putida. Environ. Microbiol. 2012, 14, 1049–1063. DOI: 10.1111/j.1462-2920.2011.02684.x.
  • Wu, H.-A.; Sheu, D.-S.; Lee, C.-Y. Rapid Differentiation between Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate-Accumulating Bacteria with Spectrofluorometry. J. Microbiol. Methods 2003, 53, 131–135. DOI: 10.1016/S0167-7012(02)00232-4.
  • Kang, S.; Xiao, L.; Meng, L.; Zhang, X.; Sun, R. Isolation and Structural Characterization of Lignin from Cotton Stalk Treated in an Ammonia Hydrothermal system. Int. J. Mol. Sci. 2012, 13, 15209–15226. DOI: 10.3390/ijms131115209.
  • Poblete-Castro, I.; Binger, D.; Rodrigues, A.; Becker, J.; Martins Dos Santos, V. A. P.; Wittmann, C. In-Silico-Driven Metabolic Engineering of Pseudomonas putida for Enhanced Production of Poly-Hydroxyalkanoates. Metab. Eng. 2013, 15, 113–123. DOI: 10.1016/j.ymben.2012.10.004.
  • Saharan, B. S.; Grewal, A.; Kumar, P. Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. Chinese J. Biol. 2014, 2014, 1–18. DOI: 10.1155/2014/802984.
  • SalvachdF, D.; Karp, E. M.; Nimlos, C. T.; Vardon, D. R.; Beckham, G. T. Towards Lignin Consolidated Bioprocessing: Simultaneous Lignin Depolymerization and Product Generation by Bacteria. Green Chem. 2015, 17, 4951–4967. DOI: 10.1039/C5GC01165E.
  • Tomizawa, S.; Chuah, J.-A.; Matsumoto, K.; Doi, Y.; Numata, K. Understanding the Limitations in the Biosynthesis of Polyhydroxyalkanoate (PHA) from Lignin Derivatives. ACS Sustainable Chem. Eng. 2014, 2, 1106–1113. DOI: 10.1021/sc500066f.
  • Kumar, M.; Singhal, A.; Verma, P. K.; Thakur, I. S. Production and Characterization of Polyhydroxyalkanoate from Lignin Derivatives by Pandoraea sp. ISTKB. ACS Omega. ST 2017, 2, 9156–9163. DOI: 10.1021/acsomega.7b01615.
  • Rehm, B. H.; Kruger, N.; Steinbuchel, A. A New Metabolic Link between Fatty Acid de Novo Synthesis and Polyhydroxyalkanoic Acid Synthesis. The PHAG gene from Pseudomonas putida KT2440 Encodes a 3-Hydroxyacyl-Acyl Carrier Protein-Coenzyme a Transferase. J. Biol. Chem. 1998, 273, 24044–24051. DOI: 10.1074/jbc.273.37.24044.
  • Rojo, F. Carbon Catabolite Repression in Pseudomonas: Optimizing Metabolic Versatility and Interactions with the Environment. FEMS Microbiol. Rev. 2010, 34, 658–684. DOI: 10.1111/j.1574-6976.2010.00218.x.
  • Gomaa, E. Z. Production of Polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli Grown on Cane Molasses Fortified with Ethanol. Braz. Arch. Biol. Technol. 2014, 57, 145–154. DOI: 10.1590/S1516-89132014000100020.
  • Obruca, S. Use of Lignocellulosic Materials for PHA Production. Chembiochemengq 2015, 29, 135–144. DOI: 10.15255/CABEQ.2014.2253.
  • Bhatia, S. K.; Gurav, R.; Choi, T.-R.; Jung, H.-R.; Yang, S.-Y.; Moon, Y.-M.; Song, H.-S.; Jeon, J.-M.; Choi, K.-W.; Yang, Y.-H. Bioconversion of Plant Biomass Hydrolysate into Bioplastic (Polyhydroxyalkanoates) Using Ralstonia eutropha 5119. Bioresour. Technol. 2019, 271, 306–315. DOI: 10.1016/j.biortech.2018.09.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.