246
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimization of Bacillus subtilis growth parameters for biosynthesis of silver nanoparticles by using response surface methodology

ORCID Icon, , , &

References

  • Kulkarni, R. R.; Shaiwale, N. S.; Deobagkar, D. N.; Deobagkar, D. D. Synthesis and Extracellular Accumulation of Silver Nanoparticles by Employing Radiation-Resistant Deinococcus radiodurans, Their Characterization, and Determination of Bioactivity. Int. J. Nanomed. 2015, 10, 963–974.
  • Alsubki, R.; Tabassum, H.; Abudawood, M.; Rabaan, A. A.; Alsobaie, S. F.; Ansar, S. Green Synthesis, Characterization, Enhanced Functionality and Biological Evaluation of Silver Nanoparticles Based on Coriander Sativum. Saudi J. Biol. Sci. 2021, 28, 2102–2108.
  • Alloosh, M. T.; Khaddam, W. I.; Almuhammady, A. K. Biosynthesis of Metal Nanoparticles Using Microorganisms and Its Medicinal Applications. NRMJ 2021, 5, 1077–1090.
  • Rose, G. K.; Soni, R.; Rishi, P.; Soni, S. K. Optimization of the Biological Synthesis of Silver Nanoparticles Using Penicillium Oxalicum GRS-1 and Their Antimicrobial Effects against Common Food-Borne Pathogens. Green Process. Synth. 2019, 8, 144–156. DOI: 10.1515/gps-2018-0042.
  • Soni, N.; Prakash, S. Antimicrobial and Mosquitocidal Activity of Microbial Synthesized Silver Nanoparticles. Parasitol. Res. 2015, 114, 1023–1030. DOI: 10.1007/s00436-014-4268-z.
  • Balakumaran, M. D.; Ramachandran, R.; Balashanmugam, P.; Mukeshkumar, D. J.; Kalaichelvan, P. T. Mycosynthesis of Silver and Gold Nanoparticles: Optimization, Characterization and Antimicrobial Activity against Human Pathogens. Microbiol. Res. 2016, 182, 8–20. DOI: 10.1016/j.micres.2015.09.009.
  • Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Synthesis of Silver Nanoparticles: A Review. Gsc. 2016, 06, 34–56. DOI: 10.4236/gsc.2016.61004.
  • Samuggam, S.; Chinni, S. V.; Mutusamy, P.; Gopinath, S. C. B.; Anbu, P.; Venugopal, V.; Reddy, L. V.; Enugutti, B. Green Synthesis and Characterization of Silver Nanoparticles Using Spondias Mombin Extract and Their Antimicrobial Activity against biofilm-Producing Bacteria. Molecules 2021, 26, 2681. DOI: 10.3390/molecules26092681.
  • El-Naggar, N. E.-A.; Mohamedin, A.; Hamza, S. S.; Sherief, A.-D. Extracellular Biofabrication, Characterization, and Antimicrobial Efficacy of Silver Nanoparticles Loaded on Cotton Fabrics Using Newly Isolated Streptomyces sp. SSHH-1E. J. Nanomater. 2016. DOI: 10.1155/2016/3257359.
  • Chokriwal, A.; Sharma, M. M.; Singh, A. Biological Synthesis of Nanoparticles Using Bacteria and Their Applications. Am. J. PharmTech Res. 2014, 4, 2249–3387.
  • Mahmoud, W. M.; Abdelmoneim, T. S.; Elazzazy, A. M. The Impact of Silver Nanoparticles Produced by Bacillus pumilus as Antimicrobial and Nematicide. Front. Microbiol. 2016, 7, 1746–1754.
  • Wang, C.; Kim, Y. J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D. C. Green Synthesis of Silver Nanoparticles by Bacillus methylotrophicus, and Their Antimicrobial Activity. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 1127–1132.
  • Saravanan, M.; Barik, S. K.; Ali, D. M.; Prakash, P.; Pugazhendhi, A. Synthesis of Silver Nanoparticles from Bacillus brevis (NCIM 2533) and Their Antibacterial Activity against Pathogenic Bacteria. Microb. Pathog. 2018, 116, 221–226.
  • Siddiqi, K. S.; Husen, A.; Rao, R. A. K. A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. J. Nanobiotechnol. 2018, 16, 14 DOI: 10.1186/s12951-018-0334-5.
  • El-Saadony, M. T.; El-Wafai, N. A.; Abd El-Fattah, H. I.; Mahgoub, S. A. Biosynthesis, Optimization and Characterization of Silver Nanoparticles Using a Soil Isolate of Bacillus pseudomycoides MT32 and Their Antifungal Activity against Some Pathogenic Fungi. Adv. Anim. Vet. Sci. 2019, 7, 238–249. DOI: 10.17582/journal.aavs/2019/7.4.238.249.
  • El-Bendary, M. A.; Moharam, M. E.; Abdelraof, M.; Allam, M. A.; Roshdy, A. M.; Shaheen, M. N. F.; Elmahdy, E. M.; Elkomy, G. M. Multi Bioactive Silver Nanoparticles Synthesized Using Mosquitocidal Bacilli and Their Characterization. Arch. Microbiol. 2020, 202, 63–75.
  • Ibrahim, S.; Ahmad, Z.; Manzoor, M. Z.; Mujahid, M.; Faheem, Z.; Adnan, A. Optimization for Biogenic Microbial Synthesis of Silver Nanoparticles through Response Surface Methodology, Characterization, Their Antimicrobial, Antioxidant, and Catalytic Potential. Sci. Rep. 2021, 11, 770. DOI: 10.1038/s41598-020-80805-0.
  • Sarsfield, M.; Roberts, A.; Streletzky, K. A.; Fodor, P. S.; Kothapalli, C. R. Optimization of Gold Nanoparticles Synthesis in Continuous-Flow Micromixers Using Response Surface Methodology. Chem. Eng. Technol. 2021, 44, 622–630. DOI: 10.1002/ceat.202000314.
  • Mohamedin, A.; El-Naggar, N. E.-A.; Shawqi Hamza, S.; Sherief, A. A. Green Synthesis, Characterization and Antimicrobial Activities of Silver Nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a Living Nanofactory: Statistical Optimization of Process Variables. Cnano. 2015, 11, 640–654. DOI: 10.2174/1573413711666150309233939.
  • Sheik, G. B.; Abdel Raheim, A. I. A.; Alzeyadi, Z. A.; AlGhonaim, M. I. Application of Plackett- Burman Design for Optimization of Silver Nanoparticles Produced by Streptomyces sp. DW102. Int. J. Adv. Biotechnol. Res. 2019, 10, 143–151.
  • Gawdat, N. A. Biosynthesis of Silver and Gold Nanoparticles by Bacillus Spp. and Their Applications. Thesis for Degree of Doctor of Philosophy in Pharmaceutical Sciences (Microbiology and Immunology). In Faculty of Pharmacy (Girls), Egypt: Al-Azhar University. 2021.
  • El-Saadony, M. T.; El-Wafai, N. A.; Abd El-Fattah, H. I.; Mahgoub, S. A. Biosynthesis, Optimization and Characterization of Silver Nanoparticles Biosynthesized by Bacillus subtilis Ssp. spizizenii MT5 Isolated from Heavy Polluted Soil. Zagazig J. Agric. Res. 2018, 45, 2439–2454.
  • El-Bendary, M. A. Studies on the Production and Stability of Bacillus thuringiensis Endotoxin. M.Sc Thesis, Egypt: Faculty of Science, Ain-Shams University, 1994.
  • El-Bendary, M. A.; Abo El-OlaS, M.; Moharam, M. E. Enzymatic Surface Hydrolysis of Polyamide Fabric by Protease Enzyme and Its Production. Indian J. Fibre Text Res. 2012, 37, 273–279.
  • Montgomery, D. C. Design and Analysis of Experiments. New York, USA: Wiley, 1991.
  • Oza, G.; Pandey, S.; Shah, R.; Sharon, N. A Mechanistic Approach for Biological Fabrication of Crystalline Gold Nanoparticles Using Marine Algae, Sargassum wightii. Eur. J. Exp. Biol. 2012, 2, 505–512.
  • Damian, L.; Patachia, S. Method for Testing the Antimicrobial Character of the Materials and Their Fitting to the Scope. Bulletin of the Transilvania University of Braşov, Series I 2014, 7, 37–44.
  • El-Beshehy, E. K. F.; Elazzazy, A. M.; Aggelis, G. Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human pathogens. Front. Microbiol. 2015, 6, 453–461. DOI: 10.3389/fmicb.2015.00453.
  • Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M. M. Nanosilver Particles in Medical Applications: synthesis, Performance and Toxicity. Int. J. Nanomed. 2014, 9, 2399–2407.
  • Karbasian, M.; Atyabi, S. M.; Siadat, S. D.; Momen, S. B. Norouzian,   Optimizing Nano-Silver Formation by Fusarium oxysporum PTCC 5115 Employing Response Surface Methodology. Am. J. Agric. Biol. Sci. 2008, 3, 433–437.
  • Panwal, J. H.; Viruthagiri, T.; Baskar, G. Statistical Modeling and Optimization of Enzymatic Milk Fat Splitting by Soybean Lecithin Using Response Surface Methodology. Int. J. Nutr. Metab. 2011, 3, 50–57.
  • Akhnazarova, S.; Kafarov, V. Experiment Optimization in Chemistry and Chemical Engineering. Moscow: Mir Publishers, 1982.
  • Othman, A. M.; Elsayed, M. A.; Elshafei, A. M.; Hassan, M. M. Application of Response Surface Methodology to Optimize the Extracellular Fungal Mediated Nanosilver Green Synthesis. J. Genet. Eng. Biotechnol. 2017, 15, 497–504. DOI: 10.1016/j.jgeb.2017.08.003.
  • Dhanya, G.; Wetha, S.; Madhavan, N. K.; Rajeev, S.; Ashok, P. Response Surface Methodology for the Optimization of Alpha Amylase Production by Bacillus amyloliquefaciens. Bioresour. Technol. 2008, 99, 4597–4602.
  • El-Naggar, N. E.; Abd Elwahed, N. A. M. Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces viridochromogenes. J. Microbiol. 2014, 52, 53–63. DOI: 10.1007/s12275-014-3410-z.
  • Abd-Elnaby, H. M.; Abo-Elala, G. M.; Abdel-Raouf, U. M.; Hamed, M. M. Antibacterial and Anticancer Activity of Extracellular Synthesized Silver Nanoparticles from Marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 2016, 42, 301–312. DOI: 10.1016/j.ejar.2016.05.004.
  • Hallol, M. M. Studies on Bacterial Synthesis of Silver Nanoparticles Using Gamma Radiation and Their Activity against Some Pathogenic Microbes. Thesis for Master Pharmacy, Cairo, Egypt: Cairo University, 2013.
  • Vaidyanathan, R.; Gopalram, S.; Kalishwaralal, K.; Deepak, V.; Pandian, S. R. K.; Gurunathan, S. Enhanced Silver Nanoparticle Synthesis by Optimization of Nitrate Reductase Activity. Colloids Surf. B Biointerfaces 2010, 75, 335–341.
  • Banerjee, K.; Rai, V. R. A Review on Mycosynthesis, Mechanism, and Characterization of Silver and Gold. Bionanosci. 2018, 8, 17–31. DOI: 10.1007/s12668-017-0437-8.
  • Deepak, V.; Kalishwaralal, K.; Pandian, S. R. K.; Gurunathan, S. An Insight into the Bacterial Biogenesis of Silver Nanoparticles, Industrial Production and Scale-up. In Rai M. and Duran N. (Ed.) Metal Nanoparticles in Microbiology (pp 17–35Berlin: Springer-Verlag. 2011.
  • Liao, C.; Li, Y.; Tjong, S. C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Ijms. 2019, 20, 449. DOI: 10.3390/ijms20020449.
  • Baygar, T.; Sarac, N.; Ugur, A.; Karaca, I. R. Antimicrobial Characteristics and Biocompatibility of the Surgical Sutures Coated with Biosynthesized Silver Nanoparticles. Bioorg. Chem. 2019, 86, 254–258. DOI: 10.1016/j.bioorg.2018.12.034.
  • Tariq, F.; Ahmed, N.; Afzal, M.; Khan, M. A. U.; Zeshan, B. Synthesis, Characterization and Antimicrobial Activity of Bacillus subtilis-Derived Silver Nanoparticles against Multidrug-Resistant Bacteria. Jundishapur J. Microbiol. 2020, 13(5), e91934. DOI: 10.5812/jjm.91934.
  • Alsamhary, K. I. Eco-Friendly Synthesis of Silver Nanoparticles by Bacillus subtilis and Their Antibacterial Activity. Saudi J. Biol. Sci. 2020, 27, 2185–2191.
  • Alsharif, S. M.; Salem, S. S.; Abdel-Rahman, M. A.; Fouda, A.; Eid, A. M.; El-Din Hassan, S.; Awad, M. A.; Mohamed, A. A. Multifunctional Properties of Spherical Silver Nanoparticles Fabricated by Different Microbial Taxa. Heliyon 2020, 6, e03943. DOI: 10.1016/j.heliyon.2020.e03943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.