181
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Progress in pretreatment of methadone: an update since 2015

&

References

  • Bart, G.; Walsh, S. L. Methadone Pharmacodynamics and Pharmacokinetics. In Handbook of Methadone Prescribing and Buprenorphine Therapy; New York, NY: Springer, 2013; pp. 59–72.
  • Chiadmi, F.; Schlatter, J. Determination and Validation of a Solid-Phase Extraction Gas Chromatography-Mass Spectrometry for the Quantification of Methadone and Its Principal Metabolite in Human Plasma. Anal. Chem. Insights. 2015, 10, 17–22.
  • Ardeshiri, M.; Jalali, F. Highly Selective Electrode for Potentiometric Analysis of Methadone in Biological Fluids and Pharmaceutical Formulations. Mater Sci Eng C Mater Biol Appl. 2016, 63, 30–36. DOI: 10.1016/j.msec.2016.02.050.
  • Enquist, J.; Ferwerda, M.; Milan-Lobo, L.; Whistler, J. L. Chronic Methadone Treatment Shows a Better Cost/Benefit Ratio than Chronic Morphine in Mice. J. Pharmacol. Exp. Ther. 2012, 340, 386–392. DOI: 10.1124/jpet.111.187583.
  • Johansson, B. A.; Berglund, M.; Lindgren, A. Efficacy of Maintenance Treatment with Methadone for Opioid Dependence: A Meta-Analytical Study. Nord. J. Psychiatry 2007, 61, 288–295. DOI: 10.1080/08039480701415251.
  • Christoffersen, D. J.; Brasch-Andersen, C.; Thomsen, J. L.; Worm-Leonhard, M.; Damkier, P.; Brosen, K. Quantification of Morphine, Morphine 6-Glucuronide, Buprenorphine, and the Enantiomers of Methadone by Enantioselective Mass Spectrometric Chromatography in Whole Blood. Forensic Sci. Med. Pathol. 2015, 11, 193–201. DOI: 10.1007/s12024-015-9673-9.
  • Baghayeri, M.; Nabavi, S.; Hasheminejad, E.; Ebrahimi, V. Introducing an Electrochemical Sensor Based on Two Layers of Ag Nanoparticles Decorated Graphene for Rapid Determination of Methadone in Human Blood Serum. Top. Catal. 2021, 1–10. DOI: 10.1007/s11244-021-01483-4.
  • Adlnasab, L.; Shahdousti, P.; Ahmar, H. Layered Double Hydroxide Intercalated with Tyrosine for Ultrasonic-Assisted Microextraction of Tramadol and Methadone from Biological Samples Followed by GC/MS Analysis. Mikrochim. Acta. 2020, 187, 265.
  • Bernard, J. P.; Havnes, I.; Slordal, L.; Waal, H.; Morland, J.; Khiabani, H. Z. Methadone-Related Deaths in Norway. Forensic Sci. Int. 2013, 224, 111–116. DOI: 10.1016/j.forsciint.2012.11.010.
  • Bratincevic, M. V.; Viskovic, T.; Sutlovic, D. Comparison of the Solid Phase and Liquid-Liquid Extraction Methods for Methadone Determination in Human Serum and Whole Blood Samples Using Gas Chromatography/Mass Spectrometry. Arh. Hig. Rada Toksikol. 2017, 68, 308–314.
  • Shan, X.; Zhang, L.; Yang, B. Review of LC Techniques for Determination of Methadone and Its Metabolite in the Biological Samples. Prep. Biochem. Biotechnol. 2021, 51, 953–960. DOI: 10.1080/10826068.2021.1952598.
  • Akbari, S.; Jahani, S.; Foroughi, M. M.; Hassani Nadiki, H. Simultaneous Determination of Methadone and Morphine at a Modified Electrode with 3D β-MnO2 Nanoflowers: application for Pharmaceutical Sample Analysis. RSC Adv. 2020, 10, 38532–38545. DOI: 10.1039/D0RA06480G.
  • Nakhla, D. S.; Hussein, L. A.; Magdy, N.; Abdallah, I. A.; Hassan, H. E. Precise Simultaneous Quantification of Methadone and Cocaine in Rat Serum and Brain Tissue Samples following Their Successive i.p. administration. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1048, 19–29. DOI: 10.1016/j.jchromb.2017.01.048.
  • Nowak, K.; Szpot, P.; Jurek, T.; Zawadzki, M. Quantification of Methadone and Its Metabolites: EDDP and EMDP Determined in Autopsy Cases Using LC-MS/MS. J. Forensic Sci. 2021, 66, 1003–1012. DOI: 10.1111/1556-4029.14674.
  • Shekari, A.; Valipour, R.; Setareh, M.; Soltaninejad, K. Ultrasound-Assisted Liquid-Liquid Extraction for the Determination of Methadone in Urine Samples Using Gas Chromatography-Mass Spectrometry. Int. J. Med. Toxicol. Forensic Med. 2020, 10, 29457. DOI: 10.32598/ijmtfm.v10i3.29457.
  • Hadjmohammadi, M. R.; Hashemi, M. Chiral Separation of Methadone Using Solid Membrane Extraction Based on Chiral Selector, Solid Membrane: sheep Skin Leather. J. Iran. Chem. Soc. 2019, 16, 1611–1616. DOI: 10.1007/s13738-019-01634-1.
  • Meng, L.; Zhang, W.; Meng, P.; Zhu, B.; Zheng, K. Comparison of Hollow Fiber Liquid-Phase Microextraction and Ultrasound-Assisted Low-Density Solvent Dispersive Liquid-Liquid Microextraction for the Determination of Drugs of Abuse in Biological Samples by Gas Chromatography-Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 989, 46–53. DOI: 10.1016/j.jchromb.2015.02.039.
  • Akhgari, M.; Sani, N. M.; Mousavi, Z. Determination of Methadone and Tramadol in Vitreous Humor Specimens Using Dispersive Liquid Liquid Microextraction and Ultra High Performance Liquid Chromatography. Ijmtfm. 2021, 11, 31530–31530. DOI: 10.32598/ijmtfm.v11i1.31530.
  • Alahyari, E.; Setareh, M.; Shekari, A.; Roozbehani, G.; Soltaninejad, K. Analysis of Opioids in Postmortem Urine Samples by Dispersive Liquid-Liquid Microextraction and High Performance Liquid Chromatography with Photo Diode Array Detection. Egypt. J. Forensic Sci. 2018, 8, 1–10. DOI: 10.1186/s41935-018-0046-x.
  • Ezoddin, M.; Adlnasab, L.; Kaveh, A. A.; Karimi, M. A. Ultrasonically Formation of Supramolecular Based Ultrasound Energy Assisted Solidification of Floating Organic Drop Microextraction for Preconcentration of Methadone in Human Plasma and Saliva Samples Prior to Gas Chromatography-Mass Spectrometry. Ultrason. Sonochem. 2019, 50, 182–187. DOI: 10.1016/j.ultsonch.2018.09.019.
  • Fernández, P.; Regenjo, M.; Bermejo, A. M.; Fernández, A. M.; Lorenzo, R. A.; Carro, A. M. Analysis of Drugs of Abuse in Human Plasma by Dispersive Liquid-Liquid Microextraction and High-Performance Liquid Chromatography. J. Appl. Toxicol. 2015, 35, 418–425. DOI: 10.1002/jat.3035.
  • Jafarinejad, M.; Ezoddin, M.; Lamei, N.; Abdi, K.; Babhadi-Ashar, N.; Pirooznia, N.; Akhgari, M. Effervescent Tablet-Assisted Demulsified Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet for Determination of Methadone in Water and Biological Samples Prior to GC-Flame Ionization and GC-MS. J. Sep. Sci. 2020, 43, 3266–3274. DOI: 10.1002/jssc.202000078.
  • Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azar, V.; Shayanfar, A.; Mohammadzadeh, L.; Jouyban, A. Extraction and Analysis of Methadone in Exhaled Breath Condensate Using a Validated LC-UV Method. J. Pharm. Pharm. Sci. 2015, 18, 207–219. DOI: 10.18433/j3wk65.
  • Lamei, N.; Ezoddin, M.; Abdi, K. Air Assisted Emulsification Liquid-Liquid Microextraction Based on Deep Eutectic Solvent for Preconcentration of Methadone in Water and Biological Samples. Talanta 2017, 165, 176–181. DOI: 10.1016/j.talanta.2016.11.036.
  • Nedaei, M.; Abdi, K.; Ghorbanian, S. A.; Pirooznia, N. Ultrasonic-Air-Assisted Solidification of Settled Organic Drop Microextraction Using Terpene-Based Deep Eutectic Solvents for the Effectual Enrichment of Methadone in Biological Samples. Chromatographia 2020, 83, 1413–1421. DOI: 10.1007/s10337-020-03952-6.
  • Shekari, A.; Forouzesh, M.; Valipour, R.; Fallah, F.; Shojaei, P. Validation and Optimization of Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction as a Preparation Method for Detection of Methadone in Saliva with Gas Chromatography-Mass Spectrometry Technique. Adv. Pharm. Bull. 2020, 10, 329–333. DOI: 10.34172/apb.2020.040.
  • Taheri, S.; Jalali, F.; Fattahi, N.; Jalili, R.; Bahrami, G. Sensitive Determination of Methadone in Human Serum and Urine by Dispersive Liquid-Liquid Microextraction Based on the Solidification of a Floating Organic Droplet Followed by HPLC-UV. J. Sep. Sci. 2015, 38, 3545–3551. DOI: 10.1002/jssc.201500636.
  • Vincenti, F.; Montesano, C.; Cellucci, L.; Gregori, A.; Fanti, F.; Compagnone, D.; Curini, R.; Sergi, M. Combination of Pressurized Liquid Extraction with Dispersive Liquid Liquid Micro Extraction for the Determination of Sixty Drugs of Abuse in Hair. J. Chromatogr. A. 2019, 1605, 360348. DOI: 10.1016/j.chroma.2019.07.002.
  • Wang, X.; Teng, F.; Wang, Y.; Lu, N. Rapid Liquid-Phase Microextraction of Analytes from Complex Samples on Superwetting Porous Silicon for Onsite SALDI-MS Analysis. Talanta 2019, 198, 63–70. DOI: 10.1016/j.talanta.2019.01.051.
  • Ahmar, H.; Nejati-Yazdinejad, M.; Najafi, M.; Hasheminasab, K. S. Switchable Hydrophilicity Solvent-Based Homogenous Liquid–Liquid Microextraction (SHS-HLLME) Combined with GC-FID for the Quantification of Methadone and Tramadol. Chromatographia 2018, 81, 1063–1070. DOI: 10.1007/s10337-018-3528-y.
  • Restan, M. S.; Skjaervø, Ø.; Martinsen, Ø. G.; Pedersen-Bjergaard, S. Towards Exhaustive Electromembrane Extraction under Stagnant Conditions. Anal. Chim. Acta. 2020, 1104, 1–9. DOI: 10.1016/j.aca.2020.01.058.
  • Zahedi, P.; Davarani, S. S.; Moazami, H. R.; Nojavan, S. Surfactant Assisted Pulsed Two-Phase Electromembrane Extraction Followed by GC Analysis for Quantification of Basic Drugs in Biological Samples. J. Pharm. Biomed. Anal. 2016, 117, 485–491. DOI: 10.1016/j.jpba.2015.10.002.
  • Hasheminasab, K. S.; Fakhari, A. R. Application of Nonionic Surfactant as a New Method for the Enhancement of Electromembrane Extraction Performance for Determination of Basic Drugs in Biological Samples. J. Chromatogr. A. 2015, 1378, 1–7. DOI: 10.1016/j.chroma.2014.11.061.
  • Fakhari, A. R.; Asadi, S.; Kosalar, H. M.; Sahragard, A.; Hashemzadeh, A.; Amini, M. M. Metal–Organic Framework Enhanced Electromembrane Extraction – a Conceptual Study Using Basic Drugs as Model Substances. Anal. Methods 2017, 9, 5646–5652. DOI: 10.1039/C7AY01093A.
  • Ara, K. M.; Raofie, F. Low-Voltage Electrochemically Stimulated Stir Membrane Liquid-Liquid Microextraction as a Novel Technique for the Determination of Methadone. Talanta 2017, 168, 105–112. DOI: 10.1016/j.talanta.2016.11.022.
  • Kyle, A. R.; Carmical, J.; Shah, D.; Pryor, J.; Brown, S. UHPLC-MS/MS Quantification of Buprenorphine, Norbuprenorphine, Methadone, and Glucuronide Conjugates in Umbilical Cord Plasma. Biomed. Chromatogr. 2015, 29, 1567–1574. DOI: 10.1002/bmc.3460.
  • El-Beqqali, A.; Abdel-Rehim, M. Molecularly Imprinted Polymer-Sol-Gel Tablet toward Micro-Solid Phase Extraction: I. Determination of Methadone in Human Plasma Utilizing Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2016, 936, 116–122. DOI: 10.1016/j.aca.2016.07.001.
  • Lopez-Garcia, E.; Mastroianni, N.; Postigo, C.; Barcelo, D.; Lopez de Alda, M. A Fully Automated Approach for the Analysis of 37 Psychoactive Substances in Raw Wastewater Based on on-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2018, 1576, 80–89. DOI: 10.1016/j.chroma.2018.09.038.
  • Montemurro, N.; Postigo, C.; Lonigro, A.; Perez, S.; Barcelo, D. Development and Validation of an Analytical Method Based on Liquid Chromatography-Tandem Mass Spectrometry Detection for the Simultaneous Determination of 13 Relevant Wastewater-Derived Contaminants in Lettuce. Anal. Bioanal. Chem. 2017, 409, 5375–5387. DOI: 10.1007/s00216-017-0363-1.
  • Majid Salimi Asl, S.; Javad Khodayar, M.; Mousavi, Z.; Akhgari, M. Methadone Extraction by Modified Quechers and Liquid-Liquid Extraction from Post-Mortem Urine by GC-MS. J. Med. Toxicol. Clin. Forensic 2017, 3, 1–4. DOI: 10.21767/2471-9641.100030.
  • Zabardasti, A.; Afrouzi, H.; Kakanejadifard, A.; Amoli‐Diva, M. Simultaneous Determination of Opioid Drugs in Urine with High‐Performance Liquid Chromatography–Ultraviolet after Supramolecular Based Magnetic NP Solid‐Phase Extraction. Micro & Nano Letters 2017, 12, 182–186. DOI: 10.1049/mnl.2016.0603.
  • Taghvimi, A.; Hamishehkar, H.; Ebrahimi, M. Development and Validation of a Magnetic Solid-Phase Extraction with High-Performance Liquid Chromatography Method for the Simultaneous Determination of Amphetamine and Methadone in Urine. J. Sep. Sci. 2016, 39, 2307–2312. DOI: 10.1002/jssc.201600030.
  • Mohammadiazar, S.; Hasanli, F.; Maham, M.; Payami Samarin, S. Solid-Phase Microextraction of Methadone in Urine Samples by Electrochemically co-Deposited Sol-Gel/Cu Nanocomposite Fiber. Biomed. Chromatogr. 2017, 31(8), e3926.
  • Abedi, H. Solid-Phase Microextraction of Methadone by Using a Chitosan Nanocomposite Incorporated with Polyoxomolibdate Nanocluster/Graphene Oxide. J. Sep. Sci. 2021, 44, 1969–1977. DOI: 10.1002/jssc.202100095.
  • Rosado, T.; Gallardo, E.; Vieira, D. N.; Barroso, M. Microextraction by Packed Sorbent as a Novel Strategy for Sample Clean-Up in the Determination of Methadone and EDDP in Hair. J. Anal. Toxicol. 2020, 44, 840–850. DOI: 10.1093/jat/bkaa040.
  • Fernandez, P.; Gonzalez, M.; Regenjo, M.; Ares, A. M.; Fernandez, A. M.; Lorenzo, R. A.; Carro, A. M. Analysis of Drugs of Abuse in Human Plasma Using Microextraction by Packed Sorbents and Ultra-High-Performance Liquid Chromatography. J. Chromatogr. A 2017, 1485, 8–19. DOI: 10.1016/j.chroma.2017.01.021.
  • Alipour, E.; Majidi, M. R.; Hoseindokht, O. Development of Simple Electrochemical Sensor for Selective Determination of Methadone in Biological Samples Using Multi-Walled Carbon Nanotubes Modified Pencil Graphite Electrode. Jnl. Chinese Chem. Soc. 2015, 62, 461–468. DOI: 10.1002/jccs.201400391.
  • Beck, R.; Carter, P.; Shonsey, E.; Graves, D. Tandem DART MS Methods for Methadone Analysis in Unprocessed Urine. J. Anal. Toxicol. 2016, 40, 140–147. DOI: 10.1093/jat/bkv128.
  • Bouquie, R.; Helene, H.; Guillaume, D.; Mostefa Daho, A. B.; Renaud, C.; Grall-Bronnec, M.; Dailly, E.; Jolliet, P. Chiral on-Line Solid Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry Assay for Quantification of (R) and (S) enantiomers of Methadone and Its Main Metabolite in Plasma. Talanta 2015, 134, 373–378. DOI: 10.1016/j.talanta.2014.11.052.
  • Davari, B.; Kotecha, N.; Clavijo, C. F.; Thomas, J. J.; Rzasa-Lynn, R.; Galinkin, J. L.; Christians, U.; Sempio, C. A Sensitive LC-MS/MS Assay for the Quantification of Methadone and Its Metabolites in Dried Blood Spots: Comparison with Plasma. Ther. Drug Monit. 2020, 42, 118–128. DOI: 10.1097/FTD.0000000000000674.
  • Du, J.; Zhu, Q.; Teng, F.; Wang, Y.; Lu, N. Ag Nanoparticles/ZnO Nanorods for Highly Sensitive Detection of Small Molecules with Laser Desorption/Ionization Mass Spectrometry. Talanta 2019, 192, 79–85. DOI: 10.1016/j.talanta.2018.09.024.
  • George, R.; Lobb, M.; Haywood, A.; Khan, S.; Hardy, J.; Good, P.; Hennig, S.; Norris, R. Quantitative Determination of the Enantiomers of Methadone in Human Plasma and Saliva by Chiral Column Chromatography Coupled with Mass Spectrometric Detection. Talanta 2016, 149, 142–148. DOI: 10.1016/j.talanta.2015.11.044.
  • Guinan, T. M.; Kirkbride, P.; Della Vedova, C. B.; Kershaw, S. G.; Kobus, H.; Voelcker, N. H. Direct Detection of Illicit Drugs from Biological Fluids by Desorption/Ionization Mass Spectrometry with Nanoporous Silicon Microparticles. Analyst 2015, 140, 7926–7933. DOI: 10.1039/c5an01754h.
  • Guinan, T. M.; Neldner, D.; Stockham, P.; Kobus, H.; Della Vedova, C. B.; Voelcker, N. H. Porous Silicon Mass Spectrometry as an Alternative Confirmatory Assay for Compliance Testing of Methadone. Drug Test Anal 2017, 9, 769–777. DOI: 10.1002/dta.2033.
  • Hosseini, M.; Pur, M. R. K.; Norouzi, P.; Moghaddam, M. R.; Ganjali, M. R. An Enhanced Electrochemiluminescence Sensor Modified with a Ru(bpy)32+/Yb2O3 nanoparticle/nafion composite for the analysis of methadone samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 483–489. DOI: 10.1016/j.msec.2017.03.070.
  • Liu, H. C.; Lee, H. T.; Hsu, Y. C.; Huang, M. H.; Liu, R. H.; Chen, T. J.; Lin, D. L. Direct Injection LC-MS-MS Analysis of Opiates, Methamphetamine, Buprenorphine, Methadone and Their Metabolites in Oral Fluid from Substitution Therapy Patients. J. Anal. Toxicol. 2015, 39, 472–480. DOI: 10.1093/jat/bkv041.
  • Mueller, F.; Losacco, G. L.; Nicoli, R.; Guillarme, D.; Thomas, A.; Grata, E. Enantiomeric Methadone Quantitation on Real Post-Mortem Dried Matrix Spots Samples: Comparison of Liquid Chromatography and Supercritical Fluid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1177, 122755. DOI: 10.1016/j.jchromb.2021.122755.
  • Pan, P.-P.; Wang, S.-H.; Wang, J.; Luo, J.; Geng, P.-W.; Zhou, Y.-F.; Hu, G.-X. Simultaneous Determination of Methadone, Fluoxetine, Venlafaxine and Their Metabolites in Rat Plasma by UPLC–MS/MS for Drug Interaction Study. Chromatographia 2016, 79, 601–608. DOI: 10.1007/s10337-016-3062-8.
  • Rezaei, B.; Tajaddodi, A.; Ensafi, A. A. An Innovative Highly Sensitive Electrochemical Sensor Based on Modified Electrode with Carbon Quantum Dots and Multiwall Carbon Nanotubes for Determination of Methadone Hydrochloride in Real Samples. Anal Methods 2020, 12, 5210–5218. DOI: 10.1039/d0ay01374a.
  • Van Hese, L.; Vaysse, P. M.; Siegel, T. P.; Heeren, R.; Rex, S.; Cuypers, E. Real-Time Drug Detection Using a Diathermic Knife Combined to Rapid Evaporative Ionisation Mass Spectrometry. Talanta 2021, 221, 121391. DOI: 10.1016/j.talanta.2020.121391.
  • Yousefi, N.; Irandoust, M.; Haghighi, M. New and Sensitive Magnetic Carbon Paste Electrode for Voltammetry Determination of Morphine and Methadone. J. Iran. Chem. Soc. 2020, 17, 2909–2922. DOI: 10.1007/s13738-020-01962-7.
  • Feliu, C.; Konecki, C.; Binet, L.; Vautier, D.; Haudecoeur, C.; Oget, O.; Fouley, A.; Marty, H.; Gozalo, C.; Cazaubon, Y.; Djerada, Z. Quantification of Methadone, Buprenorphine, Naloxone, Opioids, and Their Derivates in Whole Blood by Liquid Chromatography-High-Resolution Mass Spectrometry: Analysis of Their Involvement in Fatal Forensic Cases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1152, 122226. DOI: 10.1016/j.jchromb.2020.122226.
  • Magalhaes, T. P.; Cravo, S.; Silva, D. D. D.; Dinis-Oliveira, R. J.; Afonso, C.; Lourdes Bastos, M.; Carmo, H. Quantification of Methadone and Main Metabolites in Nails. J. Anal. Toxicol. 2018, 42, 192–206. DOI: 10.1093/jat/bkx099.
  • Prosen, H.; Fontanals, N.; Borrull, F.; Marce, R. M. Determination of Seven Drugs of Abuse and Their Metabolites in Surface and Wastewater Using Solid-Phase Extraction Coupled to Liquid Chromatography with High-Resolution Mass Spectrometry. J. Sep. Sci. 2017, 40, 3621–3631. DOI: 10.1002/jssc.201700287.
  • Lamei, N.; Ezoddin, M.; Ardestani, M. S.; Abdi, K. Dispersion of Magnetic Graphene Oxide Nanoparticles Coated with a Deep Eutectic Solvent Using Ultrasound Assistance for Preconcentration of Methadone in Biological and Water Samples Followed by GC-FID and GC-MS. Anal. Bioanal. Chem. 2017, 409, 6113–6121. DOI: 10.1007/s00216-017-0547-8.
  • Millán-Santiago, J.; García-Valverde, M. T.; Lucena, R.; Cárdenas, S. Polyamide-Coated Wooden Tips Coupled to Direct Infusion Mass Spectrometry, a High Throughput Alternative for the Determination of Methadone, Cocaine and Methamphetamine in Oral Fluid. Microchem. J. 2021, 162, 105843. DOI: 10.1016/j.microc.2020.105843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.