385
Views
2
CrossRef citations to date
0
Altmetric
Reviews

In-situ transesterification of single-cell oil for biodiesel production: a review

, , , &

References

  • ElMekawy, A.; Hegab, H. M.; Vanbroekhoven, K.; Pant, D. Techno-Productive Potential of Photosynthetic Microbial Fuel Cells through Different Configurations. Renew. Sustain. Energy Rev. 2014, 39, 617–627. DOI: 10.1016/j.rser.2014.07.116.
  • Mamo, T. T.; Mekonnen, Y. S. Microwave-Assisted Biodiesel Production from Microalgae, Scenedesmus Species, Using Goat Bone-Made Nano-Catalyst. Appl. Biochem. Biotechnol. 2020, 190, 1147–1162.
  • Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Techno-Economic Study of Different Alternatives for Biodiesel Production. Fuel Process. Technol. 2008, 89, 740–748. DOI: 10.1016/j.fuproc.2008.01.007.
  • Fukuda, H.; Kondo, A.; Noda, H. Biodiesel Fuel Production by Transesterification of Oils. J. Biosci. Bioeng. 2001, 92, 405–416.
  • Kulkarni, M. G.; Dalai, A. K. Waste Cooking OilAn Economical Source for Biodiesel: A Review. Ind. Eng. Chem. Res. 2006, 45, 2901–2913. DOI: 10.1021/ie0510526.
  • Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel Production from Oleaginous Microorganisms. Renew. Energy 2009, 34, 1–5. DOI: 10.1016/j.renene.2008.04.014.
  • Liu, L.; Hu, Y.; Wen, P.; Li, N.; Zong, M.; Ou-Yang, B.; Wu, H. Evaluating the Effects of Biocompatible Cholinium Ionic Liquids on Microbial Lipid Production by Trichosporon Fermentans. Biotechnol. Biofuels. 2015, 8, 119.
  • Shen, Q.; Lin, H.; Wang, Q.; Fan, X.; Yang, Y.; Zhao, Y. Sweet Potato Vines Hydrolysate Promotes Single Cell Oils Production of Trichosporon Fermentans in High-Density Molasses Fermentation. Bioresour. Technol. 2015, 176, 249–256.
  • Yu, D.; Wang, X.; Fan, X.; Ren, H.; Hu, S.; Wang, L.; Shi, Y.; Liu, N.; Qiao, N. Refined Soybean Oil Wastewater Treatment and Its Utilization for Lipid Production by the Oleaginous Yeast Trichosporon Fermentans. Biotechnol. Biofuels. 2018, 11, 299.
  • Banerjee, A.; Sharma, T.; Nautiyal, A. K.; Dasgupta, D.; Hazra, S.; Bhaskar, T.; Ghosh, D. Scale-up Strategy for Yeast Single Cell Oil Production for Rhodotorula Mucilagenosa IIPL32 from Corn Cob Derived Pentosan. Bioresour. Technol. 2020, 309, 123329.
  • Di Fidio, N.; Dragoni, F.; Antonetti, C.; De Bari, I.; Raspolli Galletti, A. M.; Ragaglini, G. From Paper Mill Waste to Single Cell Oil: Enzymatic Hydrolysis to Sugars and Their Fermentation into Microbial Oil by the Yeast Lipomyce Sstarkeyi. Bioresour. Technol. 2020, 315, 123790.
  • Parsons, S.; Allen, M. J.; Chuck, C. J. Coproducts of Algae and Yeast-Derived Single Cell Oils: A Critical Review of Their Role in Improving Biorefinery Sustainability. Bioresour. Technol. 2020, 303, 122862.
  • Probst, K. V.; Schulte, L. R.; Durrett, T. P.; Rezac, M. E.; Vadlani, P. V. Oleaginous Yeast: A Value-Added Platform for Renewable Oils. Crit. Rev. Biotechnol. 2016, 36, 942–955.
  • Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. DOI: 10.3389/fmicb.2016.01539.
  • Tsigie, Y. A.; Wang, C.-Y.; Kasim, N. S.; Diem, Q.-D.; Huynh, L.-H.; Ho, Q.-P.; Truong, C.-T.; Ju, Y.-H. Oil Production from Yarrowia lipolytica Po1g Using Rice Bran Hydrolysate. J. Biomed. Biotechnol. 2012, 2012, 378384.
  • Rakicka, M.; Lazar, Z.; Dulermo, T.; Fickers, P.; Nicaud, J. M. Lipid Production by the Oleaginous Yeast Yarrowia lipolytica Using Industrial by-Products under Different Culture Conditions. Biotechnol. Biofuels. 2015, 8, 104.
  • Saygün, A.; Şahin-Yeşilçubuk, N.; Aran, N. Effects of Different Oil Sources and Residues on Biomass and Metabolite Production by Yarrowia lipolytica YB 423-12. J. Am. Oil Chem. Soc. 2014, 91, 1521–1530. DOI: 10.1007/s11746-014-2506-2.
  • Huang, C.; Chen, X.-F.; Xiong, L.; Chen, X.; Ma, L.-L.; Chen, Y. Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnol. Adv. 2013, 31, 129–139.
  • Cao, X.; Pan, Y.; Wei, W.; Yuan, T.; Wang, S.; Xiang, L.; Yuan, Y. Single Cell Oil Production by Trichosporon Sp.: Effects of Fermentation Conditions on Fatty Acid Composition and Applications in Synthesis of Structured Triacylglycerols. Lebenson. Wiss. Technol. 2021, 148, 111691. DOI: 10.1016/j.lwt.2021.111691.
  • Ehimen, E. A.; Sun, Z. F.; Carrington, C. G. Variables Affecting the in-Situ Transesterification of Microalgae Lipids. Fuel. 2010, 89, 677–684. DOI: 10.1016/j.fuel.2009.10.011.
  • Haas, M. J.; Scott, K. M.; Foglia, T. A.; Marmer, W. N. The General Applicability of in-Situ Transesterification for the Production of Fatty Acid Esters from a Variety of Feedstocks. J. Am. Oil Chem. Soc. 2007, 84, 963–970. DOI: 10.1007/s11746-007-1119-4.
  • Revellame, E.; Hernandez, R.; French, W.; Holmes, W.; Alley, E. Biodiesel from Activated Sludge through in-Situ Transesterification. J. Chem. Technol. Biotechnol. 2010, 85, 614–620. DOI: 10.1002/jctb.2317.
  • Haas, M. J.; Scott, K. M. Moisture Removal Substantially Improves the Efficiency of in-Situ Biodiesel Production from Soybeans. J. Amer. Oil Chem. Soc. 2007, 84, 197–204. DOI: 10.1007/s11746-006-1024-2.
  • Mondala, A.; Liang, K.; Toghiani, H.; Hernandez, R.; French, T. Biodiesel Production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 2009, 100, 1203–1210. DOI: 10.1016/j.biortech.2008.08.020.
  • Özgül-Yücel, S.; Türkay, S. Variables Affecting the Yields of Methyl Esters Derived from in-Situ Esterification of Rice Bran Oil. J. Amer. Oil Chem. Soc. 2002, 79, 611–614. DOI: 10.1007/s11746-002-0531-5.
  • Suter, B.; Grob, K.; Pacciarelli, B. Determination of Fat Content and Fatty Acid Composition through 1-Min Transesterification in the Food Sample; Principles. Zeitschrift fürLebensmitteluntersuchung und -Forschung A. 1997, 204, 252–258. DOI: 10.1007/s002170050073.
  • Sathish, A.; Sims, R. C. Biodiesel from Mixed Culture Algae via a Wet Lipid Extraction Procedure. Bioresour. Technol. 2012, 118, 643–647. DOI: 10.1016/j.biortech.2012.05.118.
  • Harrington, K. J.; D'Arcy-Evans, C. A Comparison of Conventional and in-Situ Methods of Transesterification of Seed Oil from a Series of Sunflower Cultivars. J. Am. Oil Chem. Soc. 1985, 62, 1009–1013. DOI: 10.1007/BF02935703.
  • Harrington, K. J.; D’Arcy-Evans, C. Transesterification in-Situ of Sunflower Seed Oil. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 314–318. DOI: 10.1021/i300018a027.
  • Liu, B.; Zhao, Z. (Kent). Biodiesel Production by Direct Methanolysis of Oleaginous Microbial Biomass. J. Chem. Technol. Biotechnol. 2007, 82, 775–780. DOI: 10.1002/jctb.1744.
  • Salam, K. A.; Velasquez-Orta, S. B.; Harvey, A. P. Surfactant-Assisted Direct Biodiesel Production from Wet Nannochloropsis Occulata by in-Situ Transesterification/Reactive Extraction. Biofuel. Res. J. 2016, 3, 366–371. DOI: 10.18331/BRJ2016.3.1.6.
  • Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part II: Technology and Potential Applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1052–1073. [Database] DOI: 10.1002/ejlt.201100015.
  • Qin, L.; Liu, L.; Zeng, A.-P.; Wei, D. From Low-Cost Substrates to Single Cell Oils Synthesized by Oleaginous Yeasts. Bioresour. Technol. 2017, 245, 1507–1519.
  • Ratledge, C.; Wynn, J. P. The Biochemistry and Molecular Biology of Lipid Accumulation in Oleaginous Microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–52.
  • Bharathiraja, B.; Sridharan, S.; Sowmya, V.; Yuvaraj, D.; Praveenkumar, R. Microbial Oil – A Plausible Alternate Resource for Food and Fuel Application. Bioresour. Technol. 2017, 233, 423–432.
  • Sabra, W.; Bommareddy, R. R.; Maheshwari, G.; Papanikolaou, S.; Zeng, A.-P. Substrates and Oxygen Dependent Citric Acid Production by Yarrowia lipolytica: Insights through Transcriptome and Fluxome Analyses. Microb. Cell. Fact. 2017, 16, 78.
  • Lim, S.-J.; Kim, E.-Y.; Ahn, Y.-H.; Chang, H.-N. Biological Nutrient Removal with Volatile Fatty Acids from Food Wastes in Sequencing Batch Reactor. Korean J. Chem. Eng. 2008, 25, 129–133. DOI: 10.1007/s11814-008-0023-4.
  • Leesing, R.; Karraphan, P. Kinetic Growth of the Isolated Oleaginous Yeast for Microbial Lipid Production. Afr. J. Biotechnol. 2011, 10, 13867–13877.
  • Beopoulos, A.; Nicaud, J.-M.; Gaillardin, C. An Overview of Lipid Metabolism in Yeasts and Its Impact on Biotechnological Processes. Appl. Microbiol. Biotechnol. 2011, 90, 1193–1206.
  • Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J. L.; Molina-Jouve, C.; Nicaud, J. M. Yarrowia lipolytica as a Model for Bio-Oil Production. Prog. Lipid. Res. 2009, 48, 375–387. DOI: 10.1016/j.plipres.2009.08.005.
  • Papanikolaou, S.; Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Nicaud, J. M.; Aggelis, G. Biosynthesis of Lipids and Organic Acids by Yarrowia lipolytica Strains Cultivated on Glucose. Eur. J. Lipid Sci. Technol. 2009, 111, 1221–1232. DOI: 10.1002/ejlt.200900055.
  • Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part I: Biochemistry of Single Cell Oil Production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. DOI: 10.1002/ejlt.201100014.
  • Li, Q.; Du, W.; Liu, D. Perspectives of Microbial Oils for Biodiesel Production. Appl. Microbiol. Biotechnol. 2008, 80, 749–756.
  • Economou, C. N.; Makri, A.; Aggelis, G.; Pavlou, S.; Vayenas, D. V. Semi-Solid State Fermentation of Sweet Sorghum for the Biotechnological Production of Single Cell Oil. Bioresour. Technol. 2010, 101, 1385–1388.
  • Liu, G.-Q.; Jin, X.-C. Screening and Optimization of Microbial Lipid Production by Thamnidium sp., a Novel Oleaginous Fungus Isolated from Forest Soil. J. Biotechnol. 2008, 136, S434. DOI: 10.1016/j.jbiotec.2008.07.1005.
  • Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. DOI: 10.1016/j.biotechadv.2007.02.001.
  • Mata, T. M.; Martins, A. A.; Caetano, N. S. Microalgae for Biodiesel Production and Other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. DOI: 10.1016/j.rser.2009.07.020.
  • Xu, H.; Miao, X.; Wu, Q. High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters. J. Biotechnol. 2006, 126, 499–507.
  • Dean, A. P.; Sigee, D. C.; Estrada, B.; Pittman, J. K. Using FTIR Spectroscopy for Rapid Determination of Lipid Accumulation in Response to Nitrogen Limitation in Freshwater Microalgae. Bioresour. Technol. 2010, 101, 4499–4507.
  • Shi, S.; Valle-Rodríguez, J. O.; Siewers, V.; Nielsen, J. Prospects for Microbial Biodiesel Production. Biotechnol. J. 2011, 6, 277–285.
  • Alvarez, H. M.; Steinbüchel, A. Triacylglycerols in Prokaryotic Microorganisms. Appl. Microbiol. Biotechnol. 2002, 60, 367–376.
  • Papanikolaou, S.; Galiotou-Panayotou, M.; Fakas, S.; Komaitis, M.; Aggelis, G. Lipid Production by Oleaginous Mucorales Cultivated on Renewable Carbon Sources. Eur. J. Lipid Sci. Technol. 2007, 109, 1060–1070. DOI: 10.1002/ejlt.200700169.
  • Fakas, S.; Galiotou-Panayotou, M.; Papanikolaou, S.; Komaitis, M.; Aggelis, G. Compositional Shifts in Lipid Fractions during Lipid Turnover in Cunninghamella Echinulata. Enzyme Microb. Technol. 2007, 40, 1321–1327. DOI: 10.1016/j.enzmictec.2006.10.005.
  • Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Aggelis, G.; Papanikolaou, S. Commercial Sugars as Substrates for Lipid Accumulation in Cunninghamella Echinulata and Mortierella Isabellina Fungi. Eur. J. Lipid Sci. Technol. 2010, 112, 1048–1057. DOI: 10.1002/ejlt.201000027.
  • Galafassi, S.; Cucchetti, D.; Pizza, F.; Franzosi, G.; Bianchi, D.; Compagno, C. Lipid Production for Second Generation Biodiesel by the Oleaginous Yeast Rhodotorula graminis. Bioresour. Technol. 2012, 111, 398–403. DOI: 10.1016/j.biortech.2012.02.004.
  • Gong, Z.; Wang, Q.; Shen, H.; Hu, C.; Jin, G.; Zhao, Z. K. Co-Fermentation of Cellobiose and Xylose by Lipomyces starkeyi for Lipid Production. Bioresour. Technol. 2012, 117, 20–24. DOI: 10.1016/j.biortech.2012.04.063.
  • Malisorn, C.; Suntornsuk, W. Optimization of β-Carotene Production by Rhodotorula glutinis DM28 in Fermented Radish Brine. Bioresour. Technol. 2008, 99, 2281–2287. DOI: 10.1016/j.biortech.2007.05.019.
  • Liang, Y.; Tang, T.; Siddaramu, T.; Choudhary, R.; Umagiliyage, A. L. Lipid Production from Sweet Sorghum Bagasse through Yeast Fermentation. Renew. Energy 2012, 40, 130–136. DOI: 10.1016/j.renene.2011.09.035.
  • Wang, Q.; Guo, F. J.; Rong, Y. J.; Chi, Z. M. Lipid Production from Hydrolysate of Cassava Starch by Rhodosporidium toruloides 21167 for Biodiesel Making. Renew. Energy 2012, 46, 164–168. DOI: 10.1016/j.renene.2012.03.002.
  • Christophe, G.; Deo, J. L.; Kumar, V.; Nouaille, R.; Fontanille, P.; Larroche, C. Production of Oils from Acetic Acid by the Oleaginous Yeast Cryptococcus Curvatus. Appl. Biochem. Biotechnol. 2012, 167, 1270–1279.
  • Angerbauer, C.; Siebenhofer, M.; Mittelbach, M.; Guebitz, G. M. Conversion of Sewage Sludge into Lipids by Lipomyces Starkeyi for Biodiesel Production. Bioresour. Technol. 2008, 99, 3051–3056. DOI: 10.1016/j.biortech.2007.06.045.
  • Xiaowei, P.; Hongzhang, C. Hemicellulose Sugar Recovery from Steam-Exploded Wheat Straw for Microbial Oil Production. Process. Biochem. 2012, 47, 209–215. DOI: 10.1016/j.procbio.2011.10.035.
  • Hui, L.; Wan, C.; Hai-Tao, D.; Xue-Jiao, C.; Qi-Fa, Z.; Yu-Hua, Z. Direct Microbial Conversion of Wheat Straw into Lipid by a Cellulolytic Fungus of Aspergillus oryzae A-4 in Solid-State Fermentation. Bioresour. Technol. 2010, 101, 7556–7562. DOI: 10.1016/j.biortech.2010.04.027.
  • Dos Santos Oliveira, M.; Feddern, V.; Kupski, L.; Cipolatti, E. P.; Badiale-Furlong, E.; De Souza-Soares, L. A. Changes in Lipid, Fatty Acids and Phospholipids Composition of Whole Rice Bran after Solid-State Fungal Fermentation. Bioresour. Technol. 2011, 102, 8335–8338. DOI: 10.1016/j.biortech.2011.06.025.
  • Subhash, G. V.; Mohan, S. V. Biodiesel Production from Isolated Oleaginous Fungi Aspergillus sp. Using Corncob Waste Liquor as a Substrate. Bioresour. Technol. 2011, 102, 9286–9290.
  • Zhao, C. H.; Zhang, T.; Li, M.; Chi, Z. M. Single Cell Oil Production from Hydrolysates of Inulin and Extract of Tubers of Jerusalem Artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem. 2010, 45, 1121–1126. DOI: 10.1016/j.procbio.2010.04.002.
  • Economou, C. N.; Aggelis, G.; Pavlou, S.; Vayenas, D. V. Single Cell Oil Production from Rice Hulls Hydrolysate. Bioresour. Technol. 2011, 102, 9737–9742.
  • Tsigie, Y. A.; Wang, C. Y.; Truong, C. T.; Ju, Y. H. Lipid Production from Yarrowia lipolytica Po1g Grown in Sugarcane Bagasse Hydrolysate. Bioresour. Technol. 2011, 102, 9216–9222. DOI: 10.1016/j.biortech.2011.06.047.
  • Makri, A.; Fakas, S.; Aggelis, G. Metabolic Activities of Biotechnological Interest in Yarrowia lipolytica Grown on Glycerol in Repeated Batch Cultures. Bioresour. Technol. 2010, 101, 2351–2358. DOI: 10.1016/j.biortech.2009.11.024.
  • Zheng, Y.; Yu, X.; Zeng, J.; Chen, S. Feasibility of Filamentous Fungi for Biofuel Production Using Hydrolysate from Dilute Sulfuric Acid Pre-Treatment of Wheat Straw. Biotechnol. Biofuels 2012, 5, 50.
  • Khot, M.; Kamat, S.; Zinjarde, S.; Pant, A.; Chopade, B.; Ravikumar, A. Single Cell Oil of Oleaginous Fungi from the Tropical Mangrove Wetlands as a Potential Feedstock for. Microb. Cell Fact. 2012, 11, 71.
  • Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. DOI: 10.1016/S0960-8524(01)00212-7.
  • Rao, R. S.; Bhadra, B.; Shivaji, S. Isolation and Characterization of Xylitol-Producing Yeasts from the Gut of Colleopteran Insects. Curr. Microbiol. 2007, 55, 441–446.
  • Zongbao, Z. Toward Cheaper Microbial Oil for Biodiesel Oil. Zhongguo Sheng wu Gong Cheng za Zhi = J. Chin. Biotechnol. 2005, 25, 8–11.
  • Papanikolaou, S. 1, 3-Propanediol and Citric Acid Production from Glycerol Containing Waste Discharged after Biodiesel Manufacturing Process. Curr. Top. Bioprocess. Food Indus. 2008, 2, 381–399.
  • Madani, M.; Enshaeieh, M.; Abdoli, A. Single Cell Oil and Its Application for Biodiesel Production. Process Saf. Environ. Prot. 2017, 111, 747–756. DOI: 10.1016/j.psep.2017.08.027.
  • Feng, X.; Walker, T. H.; Bridges, W. C.; Thornton, C.; Gopalakrishnan, K. Biomass and Lipid Production of Chlorella Protothecoides under Heterotrophic Cultivation on a Mixed Waste Substrate of Brewer Fermentation and Crude Glycerol. Bioresour. Technol. 2014, 166, 17–23.
  • Bellou, S.; Aggelis, G. Biochemical Activities in Chlorella sp. and Nannochloropsis salina during Lipid and Sugar Synthesis in a Lab-Scale Open Pond Simulating Reactor. J. Biotechnol. 2013, 164, 318–329. DOI: 10.1016/j.jbiotec.2013.01.010.
  • Diamantopoulou, P.; Papanikolaou, S.; Katsarou, E.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Mushroom Polysaccharides and Lipids Synthesized in Liquid Agitated and Static Cultures. Part II: Study of Volvariella volvacea. Appl. Biochem. Biotechnol. 2012, 167, 1890–1906. DOI: 10.1007/s12010-012-9714-8.
  • Diamantopoulou, P.; Papanikolaou, S.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Patterns of Major Metabolites Biosynthesis by Different Mushroom Fungi Grown on Glucose-Based Submerged Cultures. Bioprocess Biosyst. Eng. 2014, 37, 1385–1400.
  • Tchakouteu, S. S.; Chatzifragkou, A.; Kalantzi, O.; Koutinas, A. A.; Aggelis, G.; Papanikolaou, S. Oleaginous Yeast Cryptococcus curvatus Exhibits Interplay between Biosynthesis of Intracellular Sugars and Lipids: Biochemical Features of Cryptococcus curvatus. Eur. J. Lipid Sci. Technol. 2015, 117, 657–672. DOI: 10.1002/ejlt.201400347.
  • Tchakouteu, S. S.; Kalantzi, O.; Gardeli, C.; Koutinas, A. A.; Aggelis, G.; Papanikolaou, S. Lipid Production by Yeasts Growing on Biodiesel-Derived Crude Glycerol: Strain Selection and Impact of Substrate Concentration on the Fermentation Efficiency. J. Appl. Microbiol. 2015, 118, 911–927.
  • Athenaki, M.; Gardeli, C.; Diamantopoulou, P.; Tchakouteu, S. S.; Sarris, D.; Philippoussis, A.; Papanikolaou, S. Lipids from Yeasts and Fungi: Physiology, Production and Analytical Considerations. J. Appl. Microbiol. 2018, 124, 336–367.
  • Papanikolaou, S.; Sarantou, S.; Komaitis, M.; Aggelis, G. Repression of Reserve Lipid Turnover in Cunninghamella echinulata and Mortierella isabellina Cultivated in Multiple-Limited Media. J. Appl. Microbiol. 2004, 97, 867–875. DOI: 10.1111/j.1365-2672.2004.02376.x.
  • Xiong, D.; Zhang, H.; Xie, Y.; Tang, N.; Berenjian, A.; Song, Y. Conversion of Mutton Fat to Cocoa Butter Equivalent by Increasing the Unsaturated Fatty Acids at the Sn-2 Position of Triacylglycerol through Fermentation by Yarrowia lipolytica. Am. J. Biochem. Biotechnol. 2015, 11, 57–65.
  • Mlı́čková, K.; Luo, Y.; Andrea, S.; Peč, P.; Chardot, T.; Nicaud, J. M. Acyl-CoA Oxidase, a Key Step for Lipid Accumulation in the Yeast Yarrowia lipolytica. J. Mol. Catal. B: Enzym. 2004, 28, 81–85.
  • Mlícková, K.; Roux, E.; Athenstaedt, K.; Andrea, S.; Daum, G.; Chardot, T.; Nicaud, J. M. Lipid Accumulation, Lipid Body Formation, and Acyl Coenzyme a Oxidases of the Yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 2004, 70, 3918–3924. DOI: 10.1128/AEM.70.7.3918-3924.2004.
  • Papanikolaou, S.; Chevalot, I.; Komaitis, M.; Aggelis, G.; Marc, I. Kinetic Profile of the Cellular Lipid Composition in an Oleaginous Yarrowia lipolytica Capable of Producing a Cocoa-Butter Substitute from Industrial Fats. Antonie Van Leeuwenhoek 2001, 80, 215–224. DOI: 10.1023/A:1013083211405.
  • Papanikolaou, S.; Chevalot, I.; Komaitis, M.; Marc, I.; Aggelis, G. J. A. M. Single Cell Oil Production by Yarrowia lipolytica Growing on an Industrial Derivative of Animal Fat in Batch Cultures. Appl. Microbiol. Biotechnol. 2002, 58, 308–312.
  • Papanikolaou, S.; Chevalot, I.; Galiotou-Panayotou, M.; Komaitis, M.; Marc, I.; Aggelis, G. Industrial Derivative of Tallow: A Promising Renewable Substrate for Microbial Lipid, Single-Cell Protein and Lipase Production by Yarrowia lipolytica. Electron. J. Biotechnol. 2007, 10, 0–435. DOI: 10.2225/vol10-issue3-fulltext-8.
  • Kinoshita, H.; Ota, Y. Concentration of Docosahexaenoic Acid from Fish Oils Using Geotrichum Sp. FO347-2. Biosci. Biotechnol. Biochem. 2001, 65, 1022–1026.
  • Bialy, H. E.; Gomaa, O. M.; Azab, K. S. Conversion of Oil Waste to Valuable Fatty Acids Using Oleaginous Yeast. World J. Microbiol. Biotechnol. 2011, 27, 2791–2798. DOI: 10.1007/s11274-011-0755-x.
  • Papanikolaou, S.; Dimou, A.; Fakas, S.; Diamantopoulou, P.; Philippoussis, A.; Galiotou-Panayotou, M.; Aggelis, G. Biotechnological Conversion of Waste Cooking Olive Oil into Lipid-Rich Biomass Using Aspergillus and Penicillium Strains: Waste Oil Valourization by Higher Fungi. J. Appl. Microbiol. 2011, 110, 1138–1150. DOI: 10.1111/j.1365-2672.2011.04961.x.
  • Papanikolaou, S.; Aggelis, G. Modeling Lipid Accumulation and Degradation in Yarrowia lipolytica Cultivated on Industrial Fats. Curr. Microbiol. 2003, 46, 398–0402. DOI: 10.1007/s00284-002-3907-2.
  • Papanikolaou, S.; Aggelis, G. Yarrowia lipolytica: A Model Microorganism Used for the Production of Tailor-Made Lipids. Eur. J. Lipid Sci. Technol. 2010, 112, 639–654. DOI: 10.1002/ejlt.200900197.
  • Lopes, M.; Miranda, S. M.; Belo, I. Microbial Valorization of Waste Cooking Oils for Valuable Compounds Production-A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2583–2616. DOI: 10.1080/10643389.2019.1704602.
  • Magdouli, S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Heterotrophic Microorganisms: A Promising Source for Biodiesel Production. Crit. Rev. Environ. Sci. Technol. 2014, 44, 416–453. DOI: 10.1080/10643389.2012.728523.
  • Bellou, S.; Triantaphyllidou, I. E.; Mizerakis, P.; Aggelis, G. High Lipid Accumulation in Yarrowia lipolytica Cultivated under Double Limitation of Nitrogen and Magnesium. J. Biotechnol. 2016, 234, 116–126. DOI: 10.1016/j.jbiotec.2016.08.001.
  • Dourou, M.; Mizerakis, P.; Papanikolaou, S.; Aggelis, G. Storage Lipid and Polysaccharide Metabolism in Yarrowia lipolytica and Umbelopsis isabellina. Appl. Microbiol. Biotechnol. 2017, 101, 7213–7226. DOI: 10.1007/s00253-017-8455-6.
  • Diamantopoulou, P.; Filippousi, R.; Antoniou, D.; Varfi, E.; Xenopoulos, E.; Sarris, D.; Papanikolaou, S. Production of Added-Value Microbial Metabolites during Growth of Yeast Strains on Media Composed of Biodiesel-Derived Crude Glycerol and Glycerol/Xylose Blends. FEMS Microbiol. Lett. 2020, 367, fnaa063. DOI: 10.1093/femsle/fnaa063.
  • Sarantou, S.; Stoforos, N. G.; Kalantzi, O.; Papanikolaou, S. Biotechnological Valorization of Biodiesel-Derived Glycerol: Trials with the Non-Conventional Yeasts Yarrowia lipolytica and Rhodosporidium sp. Carbon Resour. Convers. 2021, 4, 61–75. DOI: 10.1016/j.crcon.2020.12.006.
  • Kourmentza, C.; Costa, J.; Azevedo, Z.; Servin, C.; Grandfils, C.; De Freitas, V.; Reis, M. A. M. Burkholderia thailandensis as a Microbial Cell Factory for the Bioconversion of Used Cooking Oil to Polyhydroxyalkanoates and Rhamnolipids. Bioresour. Technol. 2018, 247, 829–837. DOI: 10.1016/j.biortech.2017.09.138.
  • Lukasiewicz, B.; Basnett, P.; Nigmatullin, R.; Matharu, R.; Knowles, J. C.; Roy, I. Binary Polyhydroxyalkanoate Systems for Soft Tissue Engineering. Acta Biomater. 2018, 71, 225–234.
  • Ojha, N.; Das, N. A Statistical Approach to Optimize the Production of Polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 Using Response Surface Methodology. Int. J. Biol. Macromol. 2018, 107, 2157–2170. DOI: 10.1016/j.ijbiomac.2017.10.089.
  • Almeida, D.; Da Silva, R. S.; Brasileiro, P.; Luna, J.; Silva, M. D. G.; Rufino, R.; Costa, A.; Sarubbo, L. Application of a Biosurfactant from Candida Tropicalis UCP 0996 Produced in Low-Cost Substrates for Hydrophobic Contaminants Removal. Chem. Eng. Trans. 2018, 64, 541–546.
  • Almeida, D. G.; Soares da Silva, R.; de, C. F.; Luna, J. M.; Rufino, R. D.; Santos, V. A.; Sarubbo, L. A. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates. Front. Microbiol. 2017, 8, 157.
  • da Rocha Junior, R. B.; Meira, H. M.; Almeida, D. G.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. Application of a Low-Cost Biosurfactant in Heavy Metal Remediation Processes. Biodegradation 2019, 30, 215–233. DOI: 10.1007/s10532-018-9833-1.
  • Liu, J.; Peng, K.; Huang, X.; Lu, L.; Cheng, H.; Yang, D.; Zhou, Q.; Deng, H. Application of Waste Frying Oils in the Biosynthesis of Biodemulsifier by a Demulsifying Strain Alcaligenes Sp. S-XJ-1. J. Environ. Sci. 2011, 23, 1020–1026. DOI: 10.1016/S1001-0742(10)60508-6.
  • Iboyo, A.; David Asitok, A.; George Ekpenyong, M.; Peter Antai, S. Selection of Enterobacter Cloacae Strain POPE6 for Fermentative Production of Extracellular Lipase on Palm Kernel Oil Processing Effluent. Int. J. Sci 2017, 3, 1–17.
  • Lopes, M.; Miranda, S. M.; Alves, J. M.; Pereira, A. S.; Belo, I. Waste Cooking Oils as Feedstock for Lipase and Lipid‐Rich Biomass Production. Eur. J. Lipid Sci. Technol. 2019, 121, 1800188. DOI: 10.1002/ejlt.201800188.
  • Xiaoyan, L.; Yu, X.; Lv, J.; Xu, J.; Xia, J.; Wu, Z.; Zhang, T.; Deng, Y. A Cost-Effective Process for the Coproduction of Erythritol and Lipase with Yarrowia lipolytica M53 from Waste Cooking Oil. Food Bioprod. Process. 2017, 103, 86–94. DOI: 10.1016/j.fbp.2017.03.002.
  • Helal, S.; Abdelhady, H.; Abou-Taleb, K.; Hassan, M.; Amer, M. Evaluation of Factors Affecting the Fungal Lipase Production Using One Factor at a Time Approach and Response Surface Methodology. Egypt. J. Microbiol. 2017, 0, 0–0. DOI: 10.21608/ejm.2017.602.1012.
  • Nanou, K.; Roukas, T. Waste Cooking Oil: A New Substrate for Carotene Production by Blakeslea trispora in Submerged Fermentation. Bioresour. Technol. 2016, 203, 198–203. DOI: 10.1016/j.biortech.2015.12.053.
  • Mat, R.; Ling, O. S.; Johari, A.; Mohammed, M. In-Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth. Bull. Chem. React. Eng. Catal. 2011, 6, 53–57. DOI: 10.9767/bcrec.6.1.678.53-57.
  • Lee, K. T.; Lim, S. The in-Situ Biodiesel Production and Its Applicability to Jatropha. In Jatropha, Challenges for a New Energy Crop, Carels, N., Sujatha, M., Bahadur, B., Eds.; Springer, New York, 2012; pp 537–556.
  • Salam, K. A.; Velasquez-Orta, S. B.; Harvey, A. P. A Sustainable Integrated in-Situ Transesterification of Microalgae for Biodiesel Production and Associated Co-Product-a Review. Renew. Sustain. Energy Rev. 2016, 65, 1179–1198. DOI: 10.1016/j.rser.2016.07.068.
  • Dugan, L. R.; Mcginnis, G. W.; Vadehra, D. Low-Temperature Direct Methylation of Lipids in Biological Materials. Lipids 1966, 1, 305–308. DOI: 10.1007/BF02532671.
  • Kasim, F. H.; Harvey, A. P.; Zakaria, R. Biodiesel Production by in-Situ Transesterification. Biofuels 2010, 1, 355–365. DOI: 10.4155/bfs.10.6.
  • Fauzi, A. H. M.; Mat, R.; Johari, A. In-Situ Transesterification Reaction for Biodiesel Production. In Biomass and Bioenergy. Springer International Publishing, Cham, 2014; pp. 89–105.
  • Harvey, A. P.; Ren, Y.; Zakaria, R. Towards a Biodiesel-Based Biorefinery: Chemical and Physical Characterisation of Reactively Extracted Canola. In International Biorefineries Conference (IBC); Newcastle University; 2009.
  • Zakaria, R.; Harvey, A. P. Direct Production of Biodiesel from Rapeseed by Reactive Extraction/in-Situ Transesterification. Fuel Process. Technol. 2012, 102, 53–60. DOI: 10.1016/j.fuproc.2012.04.026.
  • Özgül-Yücel, S.; Türkay, S. FA Monoalkylesters from Rice Bran Oil by in-Situ Esterification. J. Amer. Oil Chem. Soc. 2003, 80, 81–84. DOI: 10.1007/s11746-003-0655-7.
  • Haas, M. J.; Scott, K. M.; Marmer, W. N.; Foglia, T. A. In-Situ Alkaline Transesterification: An Effective Method for the Production of Fatty Acid Esters from Vegetable Oils. J. Amer. Oil Chem. Soc. 2004, 81, 83–89. DOI: 10.1007/s11746-004-0861-3.
  • Jairurob, P.; Phalakornkule, C.; Na-udom, A.; Petiraksakul, A. Reactive Extraction of after-Stripping Sterilized Palm Fruit to Biodiesel. Fuel 2013, 107, 282–289. DOI: 10.1016/j.fuel.2013.01.051.
  • Kartika, I. A.; Yani, M.; Ariono, D.; Evon, P.; Rigal, L. Biodiesel Production from Jatropha Seeds: Solvent Extraction and in-Situ Transesterification in a Single Step. Fuel. 2013, 106, 111–117. DOI: 10.1016/j.fuel.2013.01.021.
  • Casas-Godoy, L.; Duquesne, S.; Bordes, F.; Sandoval, G.; Marty, A. Lipases: An Overview. Lipases Phospholipases 2012, 2012, 3–30.
  • Hara, M. Environmentally Benign Production of Biodiesel Using Heterogeneous Catalysts. ChemSusChem. 2009, 2, 129–135. DOI: 10.1002/cssc.200800222.
  • Cavalcanti, E. D. C.; Aguieiras, É. C. G.; da Silva, P. R.; Duarte, J. G.; Cipolatti, E. P.; Fernandez-Lafuente, R.; da Silva, J. A. C.; Freire, D. M. G. Improved Production of Biolubricants from Soybean Oil and Different Polyols via Esterification Reaction Catalyzed by Immobilized Lipase from Candida Rugosa. Fuel 2018, 215, 705–713. DOI: 10.1016/j.fuel.2017.11.119.
  • Fernandes, K. V.; Cavalcanti, E. D. C.; Cipolatti, E. P.; Aguieiras, E. C. G.; Pinto, M. C. C.; Tavares, F. A.; da Silva, P. R.; Fernandez-Lafuente, R.; Arana-Peña, S.; Pinto, J. C.; et al. Enzymatic Synthesis of Biolubricants from by-Product of Soybean Oil Processing Catalyzed by Different Biocatalysts of Candida rugosa Lipase. Catal. Today 2021, 362, 122–129. DOI: 10.1016/j.cattod.2020.03.060.
  • Ceron, A. A.; Boas, R. N. V.; Biaggio, F. C.; De Castro, H. F. Synthesis of Biolubricant by Transesterification of Palm Kernel Oil with Simulated Fusel Oil: Batch and Continuous Processes. Biomass Bioenergy 2018, 119, 166–172. DOI: 10.1016/j.biombioe.2018.09.013.
  • Hajar, M.; Vahabzadeh, F. Biolubricant Production from Castor Oil in a Magnetically Stabilized Fluidized Bed Reactor Using Lipase Immobilized on Fe3O4 Nanoparticles. Ind. Crops Prod. 2016, 94, 544–556. DOI: 10.1016/j.indcrop.2016.09.030.
  • Cao, X.; Xu, H.; Li, F.; Zou, Y.; Ran, Y.; Ma, X.; Cao, Y.; Xu, Q.; Qiao, D.; Cao, Y. One-Step Direct Transesterification of Wet Yeast for Biodiesel Production Catalyzed by Magnetic Nanoparticle-Immobilized Lipase. Renew. Energy 2021, 171, 11–21. DOI: 10.1016/j.renene.2021.02.065.
  • Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pre-Treatment Methods Used to Improve Lipid Extraction from Oleaginous Microorganisms. Molecules 2018, 23, 1562.
  • Onumaegbu, C.; Mooney, J.; Alaswad, A.; Olabi, A. G. Pre-Treatment Methods for Production of Biofuel from Microalgae Biomass. Renew. Sustain. Energy Rev. 2018, 93, 16–26. DOI: 10.1016/j.rser.2018.04.015.
  • Byreddy, A. R.; Barrow, C. J.; Puri, M. Bead Milling for Lipid Recovery from Thraustochytrid Cells and Selective Hydrolysis of Schizochytrium DT3 Oil Using Lipase. Bioresour. Technol. 2016, 200, 464–469. DOI: 10.1016/j.biortech.2015.10.019.
  • Taleb, A.; Kandilian, R.; Touchard, R.; Montalescot, V.; Rinaldi, T.; Taha, S.; Takache, H.; Marchal, L.; Legrand, J.; Pruvost, J. Screening of Freshwater and Seawater Microalgae Strains in Fully Controlled Photobioreactors for Biodiesel Production. Bioresour. Technol. 2016, 218, 480–490.
  • Mei, C. Y.; Ti, T. B.; Ibrahim, M. N.; Ariff, A.; Chuan, L. The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill. Biotechnol. Biopro. Eng. 2005, 10, 284.
  • Lee, A. K.; Lewis, D. M.; Ashman, P. J. Disruption of Microalgal Cells for the Extraction of Lipids for Biofuels: Processes and Specific Energy Requirements. Biomass. Bioenergy 2012, 46, 89–101. DOI: 10.1016/j.biombioe.2012.06.034.
  • Dong, T.; Knoshaug, E. P.; Pienkos, P. T.; Laurens, L. M. L. Lipid Recovery from Wet Oleaginous Microbial Biomass for Biofuel Production: A Critical Review. Appl. Energy 2016, 177, 879–895. DOI: 10.1016/j.apenergy.2016.06.002.
  • Chemat, F.; Zill-e-Huma; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835.
  • Zhang, L.; Jin, Y.; Xie, Y.; Wu, X.; Wu, T. Releasing Polysaccharide and Protein from Yeast Cells by Ultrasound: Selectivity and Effects of Processing Parameters. Ultrason. Sonochem. 2014, 21, 576–581.
  • Gerde, J. A.; Montalbo-Lomboy, M.; Yao, L.; Grewell, D.; Wang, T. Evaluation of Microalgae Cell Disruption by Ultrasonic Treatment. Bioresour. Technol. 2012, 125, 175–181.
  • Yoo, G.; Park, W.-K.; Kim, C. W.; Choi, Y.-E.; Yang, J.-W. Direct Lipid Extraction from Wet Chlamydomonas reinhardtii Biomass Using Osmotic Shock. Bioresour. Technol. 2012, 123, 717–722.
  • Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresour. Technol. 2010, 101, S75–S7.
  • Lebovka, N.; Vorobiev, E.; Chemat, F. Enhancing Extraction Processes in the Food Industry, CRC Press, Boca Raton; 2012.
  • Sheng, J.; Vannela, R.; Rittmann, B. E. Evaluation of Cell-Disruption Effects Pulsed-Electric-Field Treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802.
  • Geciova, J.; Bury, D.; Jelen, P. Methods for Disruption of Microbial Cells for Potential Use in the Dairy Industry—a Review. Int. Dairy J. 2002, 12, 541–553. DOI: 10.1016/S0958-6946(02)00038-9.
  • Kakko, N.; Ivanona, N.; Rantasalo, A. Cell Disruption Methods. CHEM-E3140 Bioprocess Technology II. 2016, pp 11–13.
  • Stanbury, P. F.; Whitaker, A.; Hall, S. Principles of Fermentation Technology. 2013; p 294.
  • Kumar, S. P. J.; Prasad, S. R.; Banerjee, R.; Agarwal, D. K.; Kulkarni, K. S.; Ramesh, K. V. Green Solvents and Technologies for Oil Extraction from Oilseeds. Chem. Cent. J. 2017, 11, 9.
  • Kumar, V.; Arora, N.; Nanda, M.; Pruthi, V. Different Cell Disruption and Lipid Extraction Methods from Microalgae for Biodiesel Production. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer Singapore, Singapore, 2019; pp. 265–292
  • Sahena, F.; Zaidul, I. S. M.; Jinap, S.; Karim, A. A.; Abbas, K. A.; Norulaini, N. A. N.; Omar, A. K. M. Application of Supercritical CO2 in Lipid Extraction – A Review. J. Food Eng. 2009, 95, 240–253. DOI: 10.1016/j.jfoodeng.2009.06.026.
  • Dunford, N. T.; Teel, J. A.; King, J. W. A Continuous Countercurrent Supercritical Fluid Deacidification Process for Phytosterol Ester Fortification in Rice Bran Oil. Food Res. Int. 2003, 36, 175–181. DOI: 10.1016/S0963-9969(02)00134-5.
  • Hubbard, J. D.; Downing, J. M.; Ram, M. S.; Chung, O. K. Lipid Extraction from Wheat Flour Using Supercritical Fluid Extraction. Cereal. Chem. 2004, 81, 693–698. DOI: 10.1094/CCHEM.2004.81.6.693.
  • Dionisi, F.; Hug, B.; Aeschlimann, J. M.; Houllemar, A. Supercritical CO2 Extraction for Total Fat Analysis of Food Products. J. Food Sci. 1999, 64, 612–615. DOI: 10.1111/j.1365-2621.1999.tb15095.x.
  • Panjanathan, R.; Narayanan, S.; Chaudhuri, A.; Anjum, S.; Kandasamy, R. Fostering Single Cell Oil Synthesis by De Novo and Ex Novo Pathway in Oleaginous Microorganisms for Biodiesel Production. Biofuels Bioenergy. 2022, 2022, 479–504.
  • Yellapu, S. K.; Kaur, R.; Tyagi, R. Detergent Assisted Ultrasonication Aided in-Situ Transesterification for Biodiesel Production from Oleaginous Yeast Wet Biomass. Bioresour. Technol. 2017, 224, 365–372.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.