210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Artificial neural network modeling and statistical optimization of medium components to enhance production of exopolysaccharide by Bacillus sp. EPS003

, &

References

  • Sutherland, I. Microbial Polysaccharides from Gram-Negative Bacteria. Int. Dairy J. 2001, 11, 663–674. DOI: 10.1016/S0958-6946(01)00112-1.
  • Sardari, R. R. R.; Kulcinskaja, E.; Ron, E. Y. C.; Björnsdóttir, S.; Friðjónsson, Ó. H.; Hreggviðsson, G. Ó.; Karlsson, E. N. Evaluation of the Production of Exopolysaccharides by Two Strains of the Thermophilic Bacterium Rhodothermus marinus. Carbohydr. Polym. 2017, 156, 1–8. DOI: 10.1016/j.carbpol.2016.08.062.
  • Tiwari, O. N.; Sasmal, S.; Kataria, A. K.; Devi, I. Application of Microbial Extracellular Carbohydrate Polymeric Substances in Food and Allied Industries. 3 Biotech. 2020, 10, 221. DOI: 10.1007/s13205-020-02200-w.
  • Costa, O. Y. A.; Raaijmakers, J. M.; Kuramae, E. E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. DOI: 10.3389/fmicb.2018.01636.
  • Widyaningrum, D.; Meindrawan, B. The Application of Microbial Extracellular Polymeric Substances in Food Industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012181. DOI: 10.1088/1755-1315/426/1/012181.
  • Zannini, E.; Waters, D. M.; Coffey, A.; Arendt, E. K. Production, Properties, and Industrial Food Application of Lactic Acid Bacteria-Derived Exopolysaccharides. Appl. Microbiol. Biotechnol. 2016, 100, 1121–1135. DOI: 10.1007/s00253-015-7172-2.
  • Zhao, D.; Liu, L.; Jiang, J.; Guo, S.; Ping, W.; Ge, J. The Response Surface Optimization of Exopolysaccharide Produced by Weissella confusa XG-3 and Its Rheological Property. Prep. Biochem. Biotechnol. 2020, 50, 1014–1022. DOI: 10.1080/10826068.2020.1780609.
  • Liu, X.; Hou, H.; Li, Y.; Yang, S.; Lin, H.; Chen, H. The Response Surface Optimization of Exopolysaccharide Produced by Saccharomyces cerevisiae Y3 and Its Partial Characterization. Prep. Biochem. Biotechnol. 2021, 52, 1–12. DOI: 10.1080/10826068.2021.1977949.
  • Moscovici, M. Present and Future Medical Applications of Microbial Exopolysaccharides. Front. Microbiol. 2015, 6, 1012. DOI: 10.3389/fmicb.2015.01012.
  • Deepak, V.; Ram Kumar Pandian, S.; Sivasubramaniam, S. D.; Nellaiah, H.; Sundar, K. Optimization of Anticancer Exopolysaccharide Production from Probiotic Lactobacillus acidophilus by Response Surface Methodology. Prep. Biochem. Biotechnol. 2016, 46, 288–297. DOI: 10.1080/10826068.2015.1031386.
  • de Oliveira Martins, P. S.; de Almeida, N. F.; Leite, S. G. F. Application of a Bacterial Extracellular Polymeric Substance in Heavy Metal Adsorption in a Co-Contaminated Aqueous System. Braz. J. Microbiol. 2008, 39, 780–786. DOI: 10.1590/S1517-83822008000400034.
  • Quintelas, C.; da Silva, V. B.; Silva, B.; Figueiredo, H.; Tavares, T. Optimization of Production of Extracellular Polymeric Substances by Arthrobacter viscosus and Their Interaction with a 13X Zeolite for the Biosorption of Cr(VI). Environ. Technol. 2011, 32, 1541–1549. DOI: 10.1080/09593330.2010.543930.
  • Siddharth, T.; Sridhar, P.; Vinila, V.; Tyagi, R. D. Environmental Applications of Microbial Extracellular Polymeric Substance (EPS): A Review. J. Environ. Manage. 2021, 287, 112307. DOI: 10.1016/j.jenvman.2021.112307.
  • Nguyen, P.-T.; Nguyen, T.-T.; Bui, D.-C.; Hong, P.-T.; Hoang, Q.-K.; Nguyen, H.-T. Exopolysaccharide Production by Lactic Acid Bacteria: The Manipulation of Environmental Stresses for Industrial Applications. AIMS Microbiol. 2020, 6, 451–469. DOI: 10.3934/microbiol.2020027.
  • Marvasi, M.; Visscher, P. T.; Casillas Martinez, L. Exopolymeric Substances (EPS) from Bacillus subtilis: Polymers and Genes Encoding Their Synthesis. FEMS Microbiol. Lett. 2010, 313, 1–9. DOI: 10.1111/j.1574-6968.2010.02085.x.
  • Shih, I.-L.; Chen, L.-D.; Wu, J.-Y. Levan Production Using Bacillus subtilis Natto Cells Immobilized on Alginate. Carbohydr. Polym. 2010, 82, 111–117. DOI: 10.1016/j.carbpol.2010.04.030.
  • Kekez, B. D.; Gojgic-Cvijovic, G. D.; Jakovljevic, D. M.; Stefanovic Kojic, J. R.; Markovic, M. D.; Beskoski, V. P.; Vrvic, M. M. High Levan Production by Bacillus licheniformis NS032 Using Ammonium Chloride as the Sole Nitrogen Source. Appl. Biochem. Biotechnol. 2015, 175, 3068–3083. DOI: 10.1007/s12010-015-1475-8.
  • Malick, A.; Khodaei, N.; Benkerroum, N.; Karboune, S. Production of Exopolysaccharides by Selected Bacillus Strains: Optimization of Media Composition to Maximize the Yield and Structural Characterization. Int. J. Biol. Macromol. 2017, 102, 539–549. DOI: 10.1016/j.ijbiomac.2017.03.151.
  • Gangalla, R.; Sampath, G.; Beduru, S.; Sarika, K.; Kaveriyappan Govindarajan, R.; Ameen, F.; Alwakeel, S.; Thampu, R. K. Optimization and Characterization of Exopolysaccharide Produced by Bacillus aerophilus Rk1 and Its In Vitro Antioxidant Activities. J. King Saud Univ. Sci. 2021, 33, 101470. DOI: 10.1016/j.jksus.2021.101470.
  • Ekpenyong, M.; Asitok, A.; Antai, S.; Ekpo, B.; Antigha, R.; Ogarekpe, N. Statistical and Artificial Neural Network Approaches to Modeling and Optimization of Fermentation Conditions for Production of a Surface/Bioactive Glyco-Lipo-Peptide. Int. J. Pept. Res. Ther. 2021, 27, 475–495. DOI: 10.1007/s10989-020-10094-8.
  • Gu, D.; Jiao, Y.; Wu, J.; Liu, Z.; Chen, Q. Optimization of EPS Production and Characterization by a Halophilic Bacterium, Kocuria rosea ZJUQH from Chaka Salt Lake with Response Surface Methodology. Molecules 2017, 22, 814. DOI: 10.3390/molecules22050814.
  • Oleksy-Sobczak, M.; Klewicka, E. Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains. Probiotics Antimicrob. Proteins 2020, 12, 774–783. DOI: 10.1007/s12602-019-09581-2.
  • El-Shafie, A. Neural Network Nonlinear Modeling for Hydrogen Production Using Anaerobic Fermentation. Neural Comput. Appl. 2014, 24, 539–547. DOI: 10.1007/s00521-012-1268-8.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Singh, P.; Shera, S. S.; Banik, J.; Banik, R. M. Optimization of Cultural Conditions Using Response Surface Methodology versus Artificial Neural Network and Modeling of L-Glutaminase Production by Bacillus cereus MTCC 1305. Bioresour. Technol. 2013, 137, 261–269. DOI: 10.1016/j.biortech.2013.03.086.
  • Suryawanshi, N.; Naik, S.; Eswari, J. S. Extraction and Optimization of Exopolysaccharide from Lactobacillus Sp. Using Response Surface Methodology and Artificial Neural Networks. Prep. Biochem. Biotechnol. 2019, 49, 987–996. DOI: 10.1080/10826068.2019.1645695.
  • Dhagat, S.; Jujjavarapu, S. E. Simulated Annealing and Artificial Neural Network as Optimization Tools to Enhance Yields of Bioemulsifier and Exopolysaccharides by Thermophilic Brevibacillus borstelensis. J. Environ. Chem. Eng. 2021, 9, 105499. DOI: 10.1016/j.jece.2021.105499.
  • Okoro, O. V.; Gholipour, A. R.; Sedighi, F.; Shavandi, A.; Hamidi, M. Optimization of Exopolysaccharide (EPS) Production by Rhodotorula mucilaginosa Sp. GUMS16. Chem. Eng. 2021, 5, 39. DOI: 10.3390/chemengineering5030039.
  • Kim, S. J.; Yim, J. H. Cryoprotective Properties of Exopolysaccharide (P-21653) Produced by the Antarctic Bacterium, Pseudoalteromonas arctica KOPRI 21653. J. Microbiol. 2007, 45, 510–514.
  • Sathishkumar, R.; Kannan, R.; Jinendiran, S.; Sivakumar, N.; Selvakumar, G.; Shyamkumar, R. Production and Characterization of Exopolysaccharide from the Sponge-Associated Bacillus subtilis MKU SERB2 and Its In-Vitro Biological Properties. Int. J. Biol. Macromol. 2021, 166, 1471–1479. DOI: 10.1016/j.ijbiomac.2020.11.026.
  • Zhang, H.; Zhang, F.; Li, Z. Gene Analysis, Optimized Production and Property of Marine Lipase from Bacillus pumilus B106 Associated with South China Sea Sponge Halichondria rugosa. World J. Microbiol. Biotechnol. 2009, 25, 1267–1274. DOI: 10.1007/s11274-009-0010-x.
  • Padmanaban, S.; Balaji, N.; Muthukumaran, C.; Tamilarasan, K. Statistical Optimization of Process Parameters for Exopolysaccharide Production by Aureobasidium pullulans Using Sweet Potato Based Medium. 3 Biotech. 2015, 5, 1067–1073. DOI: 10.1007/s13205-015-0308-3.
  • Pappu, S. M. J.; Gummadi, S. N. Artificial Neural Network and Regression Coupled Genetic Algorithm to Optimize Parameters for Enhanced Xylitol Production by Debaryomyces nepalensis in Bioreactor. Biochem. Eng. J. 2017, 120, 136–145. DOI: 10.1016/j.bej.2017.01.010.
  • Srikanth, R.; Siddartha, G.; Sundhar Reddy, C. H. S. S.; Harish, B. S.; Janaki Ramaiah, M.; Uppuluri, K. B. Antioxidant and anti-Inflammatory Levan Produced from Acetobacter xylinum NCIM2526 and Its Statistical Optimization. Carbohydr. Polym. 2015, 123, 8–16. DOI: 10.1016/j.carbpol.2014.12.079.
  • Abdel-Fattah, A. F.; Mahmoud, D. A. R.; Esawy, M. A. T. Production of Levansucrase from Bacillus subtilis NRC 33a and Enzymic Synthesis of Levan and Fructo-Oligosaccharides. Curr. Microbiol. 2005, 51, 402–407. DOI: 10.1007/s00284-005-0111-1.
  • Vidhyalakshmi, R.; Valli, N. C.; Narendra Kumar, G.; Sunkar, S. Bacillus circulans Exopolysaccharide: Production, Characterization and Bioactivities. Int. J. Biol. Macromol. 2016, 87, 405–414. DOI: 10.1016/j.ijbiomac.2016.02.001.
  • Hereher, F.; ElFallal, A.; Abou-Dobara, M.; Toson, E.; Abdelaziz, M. M. Cultural Optimization of a New Exopolysaccharide Producer “Micrococcus roseus”. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 632–639. DOI: 10.1016/j.bjbas.2018.07.007.
  • Jathore, N. R.; Bule, M. V.; Tilay, A.; V; Annapure, U. S. Microbial Levan from Pseudomonas fluorescens: Characterization and Medium Optimization for Enhanced Production. Food Sci. Biotechnol. 2012, 21, 1045–1053. DOI: 10.1007/s10068-012-0136-8.
  • Hill, A.; Karboune, S.; Mateo, C. Immobilization and Stabilization of Levansucrase Biocatalyst of High Interest for the Production of Fructooligosaccharides and Levan. J. Chem. Technol. Biotechnol. 2016, 91, 2440–2448. DOI: 10.1002/jctb.4832.
  • Saber, W. I. A.; E. El-Nagg, N. Optimization of Fermentation Conditions for the Biosynthesis of Inulinase by the New Source; Aspergillus tamarii and Hydrolysis of Some Inulin Containing Agro-Wastes. Biotechnology 2009, 8, 425–433. DOI: 10.3923/biotech.2009.425.433.
  • Gorret, N.; Maubois, J. L.; Engasser, J. M.; Ghoul, M. Study of the Effects of Temperature, PH and Yeast Extract on Growth and Exopolysaccharides Production by Propionibacterium acidipropionici on Milk Microfiltrate Using a Response Surface Methodology. J. Appl. Microbiol. 2001, 90, 788–796. DOI: 10.1046/j.1365-2672.2001.01310.x.
  • Sharma, K.; Sharma, N.; Bajwa, J.; Devi, S. Optimization of Various Process Parameters Using Response Surface Methodology for Exopolysaccharide Production from a Novel Strain Pediococcus acidilactici KM0 (Accession Number KX671557) Isolated from Milk Cream. IJERMT 2017, 6, 27–33. DOI: 10.23956/ijermt/V6N1/117.
  • Saad, A.; Moghannem, S.; Farag, M.; Shehab, A.; Salah, M. Media Optimization for Exopolysaccharide Producing Klebsiella oxytoca KY498625 under Varying Cultural Conditions. Microb. Biotechnol. 2017, 4, 16–30.
  • Ragavan, M. L.; Das, N. Optimization of Exopolysaccharide Production by Probiotic Yeast Lipomyces starkeyi VIT-MN03 Using Response Surface Methodology and Its Applications. Ann. Microbiol. 2019, 69, 515–530. DOI: 10.1007/s13213-019-1440-9.
  • Belur, P.; Saidutta, M. B. Production Optimization of a New Exopolysaccharide from Bacillus methylotrophicus and Its Characterization. Int. J. Biotechnol. Biochem. 2015, 11, 21–39.
  • Kiran, B.; Kaushik, A.; Kaushik, C. Response Surface Methodological Approach for Optimizing Removal of Cr(VI) from Aqueous Solution Using Immobilized Cyanobacterium. Chem. Eng. J. 2007, 126, 147–153. DOI: 10.1016/j.cej.2006.09.002.
  • Park, C. B.; Lee, S. B. Ammonia Production from Yeast Extract and Its Effect on Growth of the Hyperthermophilic Archaeon Sulfolobus solfataricus. Biotechnol. Bioprocess. Eng. 1998, 3, 115–118. DOI: 10.1007/BF02932514.
  • Khani, M.; Bahrami, A.; Chegeni, A.; Ghafari, M. D.; Mansouran Zadeh, A. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2. Iran. J. Biotechnol. 2016, 14, 13–18. DOI: 10.15171/ijb.1266.
  • Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C. K. M. Strategies for Fermentation Medium Optimization: An In-Depth Review. Front. Microbiol. 2016, 7, 2087. DOI: 10.3389/fmicb.2016.02087.
  • Jorjani, E.; Chehreh Chelgani, S.; Mesroghli, S. Application of Artificial Neural Networks to Predict Chemical Desulfurization of Tabas Coal. Fuel 2008, 87, 2727–2734. DOI: 10.1016/j.fuel.2008.01.029.
  • Sharon Mano Pappu, J.; Vijayakumar, G. K.; Ramamurthy, V. Artificial Neural Network Model for Predicting Production of Spirulina platensis in Outdoor Culture. Bioresour. Technol. 2013, 130, 224–230. DOI: 10.1016/j.biortech.2012.12.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.