117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative assessment of LPS-HBsAg interaction by introducing a novel application of immunoaffinity chromatography

, ORCID Icon, ORCID Icon &

References

  • Mousavi, S.; Shojaosadati, S. Recent Improvements in Production of Recombinant Proteins. J. Med. Armi. 2013, 2, 139–150.
  • WHO. WHO: Annex 4 Recommendations to Assure the Quality, Safety and Efficacy of Recombinant Hepatitis B Vaccines; Geneva: WHO, 2013; Vol. 978.
  • Reich, J.; Weyer, F. A.; Tamura, H.; Nagaoka, I.; Motschmann, H. Low Endotoxin Recovery—Masking of Naturally Occurring Endotoxin. IJMS 2019, 20, 838. DOI: 10.3390/ijms20040838.
  • Ongkudon, C. M.; Chew, J. H.; Liu, B.; Danquah, M. K. Chromatographic Removal of Endotoxins: A Bioprocess Engineer’s Perspective. ISRN Chromatogr. 2012, 2012, 1–9. DOI: 10.5402/2012/649746.
  • Liu, S.; Tobias, R.; McClure, S.; Styba, G.; Shi, Q.; Jackowski, G. Removal of Endotoxin from Recombinant Protein Preparations. Clin. Biochem. 1997, 30, 455–463. DOI: 10.1016/S0009-9120(97)00049-0.
  • Magalhães, P. O.; Lopes, A. M.; Mazzola, P. G.; Rangel-Yagui, C.; Penna, T. C. V.; Pessoa, A. Methods of Endotoxin Removal from Biological Preparations: A Review. J. Pharm. Pharm. Sci. 2007, 10, 388–404.
  • USP. 85 Bacterial Endotoxins Test. U. S. Pharmacopeial Convention. https://www.usp.org/harmonization-standards/pdg/general-methods/bacterial-endotoxins.
  • Brito, L. A.; Singh, M. Acceptable Levels of Endotoxin in Vaccine Formulations during Preclinical Research. J. Pharm. Sci. 2011, 100, 34–37. DOI: 10.1002/jps.22267.
  • Hernández-Bernal, F.; Aguilar-Betancourt, A.; Aljovin, V.; Arias, G.; Valenzuela, C.; Pérez De Alejo, K.; Hernández, K.; Oquendo, O.; Figueredo, N.; Figueroa, N.; et al. Comparison of Four Recombinant Hepatitis B Vaccines Applied on an Accelerated Schedule in Healthy Adults. Hum. Vaccin. 2011, 7, 1026–1036. DOI: 10.4161/hv.7.10.15989.
  • Papaevangelou, G.; Roumeliotou-Karayannis, A. New Vaccines against Hepatitis B. Eur. J. Epidemiol. 1987, 3, 1–4. DOI: 10.1007/BF00145063.
  • Hardy, E.; Martı́nez, E.; Diago, D.; Dı́az, R.; González, D.; Herrera, L. Large-Scale Production of Recombinant Hepatitis B Surface Antigen from Pichia pastoris. J. Biotechnol. 2000, 77, 157–167. DOI: 10.1016/S0168-1656(99)00201-1.
  • Gazor, M.; Talesh, S. S. A.; Kavianpour, A.; Khatami, M.; Javidanbardan, A.; Hosseini, S. N. A Novel Cell Disruption Approach of Pichia pastoris in the Continuous System: Effectiveness of Laser-Induced Cell Lysis. Biotechnol. Bioproc. E 2018, 23, 49–54. DOI: 10.1007/s12257-017-0261-6.
  • Mojarrad Moghanloo, G. M.; Khatami, M.; Javidanbardan, A.; Hosseini, S. N. Enhancing Recovery of Recombinant Hepatitis B Surface Antigen in Lab-Scale and Large-Scale Anion-Exchange Chromatography by Optimizing the Conductivity of Buffers. Protein Expr. Purif. 2018, 141, 25–31. DOI: 10.1016/j.pep.2017.08.011.
  • Rahimi, A.; Hosseini, S. N.; Karimi, A.; Aghdasinia, H.; Arabi Mianroodi, R. Enhancing the Efficiency of Recombinant Hepatitis B Surface Antigen Production in Pichia pastoris by Employing Continuous Fermentation. Biochem. Eng. J. 2019, 141, 112–119. DOI: 10.1016/j.bej.2018.10.019.
  • Hosseini, S. N.; Ghaisari, P.; Sharifnia, S.; Khatami, M.; Javidanbardan, A. Improving the Recovery of Clarification Process of Recombinant Hepatitis B Surface Antigen in Large-Scale by Optimizing Adsorption-Desorption Parameters on Aerosil-380. Prep. Biochem. Biotechnol. 2018, 48, 490–497. DOI: 10.1080/10826068.2018.1466153.
  • Diminsky, D.; Schirmbeck, R.; Reimann, J.; Barenholz, Y. Comparison between Hepatitis B Surface Antigen (HBsAg) Particles Derived from Mammalian Cells (CHO) and Yeast Cells (Hansenula Polymorpha): Composition, Structure and Immunogenicity. Vaccine 1997, 15, 637–647. DOI: 10.1016/S0264-410X(96)00239-3.
  • Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein Expression in Pichia pastoris: Recent Achievements and Perspectives for Heterologous Protein Production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. DOI: 10.1007/s00253-014-5732-5.
  • Cregg, J. M.; Cereghino, J. L.; Shi, J.; Higgins, D. R. Recombinant Protein Expression in Pichia pastoris. MB 2000, 16, 23–52. DOI: 10.1385/MB:16:1:23.
  • Cereghino, J. L.; Cregg, J. M. Heterologous Protein Expression in the Methylotrophic Yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. DOI: 10.1111/j.1574-6976.2000.tb00532.x.
  • Lopez, M.; Rodriguez, E. N.; Lobaina, Y.; Musacchio, A.; Falcon, V.; Guillen, G.; Aguilar, J. C. Characterization of the Size Distribution and Aggregation of Virus-like Nanoparticles Used as Active Ingredients of the HeberNasvac Therapeutic Vaccine against Chronic Hepatitis B. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 025009. DOI: 10.1088/2043-6254/aa5e1d.
  • Hosseini, S. N.; Sarvari, T.; Bashiri, G.; Khatami, M.; Shojaosadati, S. A. Assessing Virus like Particles Formation and R-HBsAg Aggregation during Large Scale Production of Recombinant Hepatitis B Surface Antigen from Pichia pastoris. Int. J. Biol. Macromol. 2019, 139, 697–711. DOI: 10.1016/j.ijbiomac.2019.08.019.
  • Hosseini, S. N.; Javidanbardan, A.; Alizadeh Salim, B. S.; Khatami, M. Large-Scale Purification of Recombinant Hepatitis B Surface Antigen from Pichia pastoris with Non-Affinity Chromatographic Methods as a Substitute to Immunoaffinity Chromatography. Prep. Biochem. Biotechnol. 2018, 48, 683–692. DOI: 10.1080/10826068.2018.1487854.
  • Kimia, Z.; Hosseini, S. N.; Ashraf Talesh, S. S.; Khatami, M.; Kavianpour, A.; Javidanbardan, A. A Novel Application of Ion Exchange Chromatography in Recombinant Hepatitis B Vaccine Downstream Processing: Improving Recombinant HBsAg Homogeneity by Removing Associated Aggregates. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1113, 20–29. DOI: 10.1016/j.jchromb.2019.03.009.
  • Petsch, D.; Anspach, F. B. Endotoxin Removal from Protein Solutions. J. Biotechnol. 2000, 76, 97–119. DOI: 10.1016/S0168-1656(99)00185-6.
  • Su, W.; Ding, X. Methods of Endotoxin Detection. J. Lab. Autom. 2015, 20, 354–364. DOI: 10.1177/2211068215572136.
  • Dullah, E. C.; Ongkudon, C. M. Current Trends in Endotoxin Detection and Analysis of Endotoxin–Protein Interactions. Crit. Rev. Biotechnol. 2017, 37, 251–261. DOI: 10.3109/07388551.2016.1141393.
  • Basauri, A.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Fernandez-Lopez, R.; Giner, L.; Moncalián, G.; de la Cruz, F.; Ortiz, I. Biochemical Interactions between LPS and LPS-Binding Molecules. Crit. Rev. Biotechnol. 2020, 40, 292–305. DOI: 10.1080/07388551.2019.1709797.
  • Gorbet, M. B.; Sefton, M. V. Endotoxin: The Uninvited Guest. Biomaterials 2005, 26, 6811–6817. DOI: 10.1016/j.biomaterials.2005.04.063.
  • Obeng, E. M.; Dullah, E. C.; Abdul Razak, N. S.; Danquah, M. K.; Budiman, C.; Ongkudon, C. M. Elucidating Endotoxin-Biomolecule Interactions with FRET: Extending the Frontiers of Their Supramolecular Complexation. J. Biol. Methods 2017, 4, e71. DOI: 10.14440/jbm.2017.172.
  • Zandieh, M.; Hosseini, S. N.; Vossoughi, M.; Khatami, M.; Abbasian, S.; Moshaii, A. Label-Free and Simple Detection of Endotoxins Using a Sensitive LSPR Biosensor Based on Silver Nanocolumns. Anal. Biochem. 2018, 548, 96–101. DOI: 10.1016/j.ab.2018.02.023.
  • Howe, J.; Garidel, P.; Roessle, M.; Richter, W.; Alexander, C.; Fournier, K.; Mach, P. J.; Waelli, T.; Gorczynski, R. M.; Ulmer, A. J.; et al. Structural Investigations into the Interaction of Hemoglobin and Part Structures with Bacterial Endotoxins. Innate Immun. 2008, 14, 39–49. DOI: 10.1177/1753425907087257.
  • Tsuchiya, M. Mechanism of Low Endotoxin Recovery Caused by a Solution Containing a Chelating Agent and a Detergent. Immunome Res. 2019, 15, 1–10. DOI: 10.35248/1745-7580.19.15.166.
  • Oztug, M.; Martinon, D.; Weers, P. M. M. Characterization of the apoLp-III/LPS Complex: Insight into the Mode of Binding Interaction. Biochemistry 2012, 51, 6220–6227. DOI: 10.1021/bi300619a.
  • Pristovšek, P.; Kidrič, J. Solution Structure of Polymyxins B and E and Effect of Binding to Lipopolysaccharide: An NMR and Molecular Modeling Study. J. Med. Chem. 1999, 42, 4604–4613. DOI: 10.1021/jm991031b.
  • Pulido, D.; Garcia-Mayoral, M. F.; Moussaoui, M.; Velázquez, D.; Torrent, M.; Bruix, M.; Boix, E. Structural Basis for Endotoxin Neutralization by the Eosinophil Cationic Protein. FEBS J. 2016, 283, 4176–4191. DOI: 10.1111/febs.13915.
  • Latorre, D.; Puddu, P.; Valenti, P.; Gessani, S. Reciprocal Interactions between Lactoferrin and Bacterial Endotoxins and Their Role in the Regulation of the Immune Response. Toxins 2010, 2, 54–68. DOI: 10.3390/toxins2010054.
  • Gurramkonda, C.; Zahid, M.; Nemani, S. K.; Adnan, A.; Gudi, S. K.; Khanna, N.; Ebensen, T.; Lünsdorf, H.; Guzmán, C. A.; Rinas, U. Purification of Hepatitis B Surface Antigen Virus-like Particles from Recombinant Pichia pastoris and In Vivo Analysis of Their Immunogenic Properties. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 940, 104–111. DOI: 10.1016/j.jchromb.2013.09.030.
  • Yousefipour, M.; Khatami, M.; Javidanbardan, A.; Hosseini, S. N.; Mehrnia, M. Integration of Size-Exclusion Chromatography and Ultracentrifugation for Purification of Recombinant Hepatitis B Surface Antigen: An Alternative Method for Immunoaffinity Chromatography. Prep. Biochem. Biotechnol. 2019, 49, 158–166. DOI: 10.1080/10826068.2018.1550658.
  • Yang, J.; Zhang, Y. I-TASSER Server: New Development for Protein Structure and Function Predictions. Nucleic Acids Res. 2015, 43, W174–W181. DOI: 10.1093/nar/gkv342.
  • Vriend, G. WHAT IF: A Molecular Modeling and Drug Design Program. J. Mol. Graph 1990, 8, 25–56. DOI: 10.1016/0263-7855(90)80070-V.
  • RCSB PDB - 4M4D: Crystal Structure of Lipopolysaccharide Binding Protein. https://www.rcsb.org/structure/4m4d (accessed April 02, 2022).
  • Eckert, J. K.; Kim, Y. J.; Kim, J. I.; Gürtler, K.; Oh, D.-Y.; Sur, S.; Lundvall, L.; Hamann, L.; van der Ploeg, A.; Pickkers, P.; et al. The Crystal Structure of Lipopolysaccharide Binding Protein Reveals the Location of a Frequent Mutation That Impairs Innate Immunity. Immunity 2013, 39, 647–660. DOI: 10.1016/J.IMMUNI.2013.09.005.
  • Westphal, O.; Jann, K. Bacterial Lipopolysaccharides. Extraction with Phenol-Water and Further Applications of the Procedures. Methods Carbohydr. Chem. 1965, 5, 83–91.
  • Shapouri, R.; Mobarez, A. M.; Ahmadi, H.; Tabaraie, B.; Doust, R. H.; Norozian, D.; Hosseini, A. Z.; Siadat, D. Optimization of Brucella Abortus Fermenter Cultural Conditions and LPS Extraction Method for Antigen Production. Res. J. Microbiol. 2008, 3, 1–8. DOI: 10.3923/jm.2008.1.8.
  • Najafzadeh, F.; Tanomand, A.; Haddadi, A.; Majidi, J. Preparation and Immunological Properties of a Nanovaccine against Pseudomonas Aeruginosa Based on Gold Nanoparticles and Detoxified Lipopolysaccharide. Iran J. Basic Med. Sci. 2021, 24, 203–212. DOI: 10.22038/IJBMS.2020.50732.11550.
  • Zahid, M.; Lünsdorf, H.; Rinas, U. Assessing Stability and Assembly of the Hepatitis B Surface Antigen into Virus-like Particles during Down-Stream Processing. Vaccine 2015, 33, 3739–3745. DOI: 10.1016/j.vaccine.2015.05.066.
  • UniProt. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids Res. 2021, 47, D506–D515.
  • Ritzén, U.; Rotticci-Mulder, J.; Strömberg, P.; Schmidt, S. R. Endotoxin Reduction in Monoclonal Antibody Preparations Using Arginine. J. Chromatogr. B, Anal. Technol. Biomed. Life Sci. 2007, 856, 343–347. DOI: 10.1016/j.jchromb.2007.06.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.