258
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The evaluation of the performance of rice husk and rice straw as potential matrix to obtain the best lipase immobilized system: creating wealth from wastes

& ORCID Icon

References

  • Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S. K. P. G.; Das, S.; Lyngdoh, Y. A.; Langyan, S.; Shukla, A.; et al. Utilization of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. DOI: 10.1007/s42398-021-00200-x.
  • Kumar Sarangi, P.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Prasad Shadangi, K.; Srivastava, R. K.; Pattnaik, B.; Arya, R. K. Utilization of Agricultural Waste Biomass and Recycling toward Circular Bioeconomy. Environ. Sci. Pollut. Res. 2022, 1, 1–14. DOI: 10.1007/s11356-022-20669-1.
  • Chen, R.; Congress, S. S. C.; Cai, G.; Duan, W.; Liu, S. Sustainable Utilization of Biomass Waste-Rice Husk Ash as a New Solidified Material of Soil in Geotechnical Engineering: A Review. Constr. Build. Mater. 2021, 292, 123219. DOI: 10.1016/j.conbuildmat.2021.123219.
  • Mittal, A.; Shukla, S.; Verma, S. Review on Suitability of Rice Husk Ash as Soil Stabilizer. In Proceedings of the Indian Geotechnical Conference 2019; Springer: Singapore, 2021; pp. 375–383. DOI: 10.1007/978-981-33-6444-8_34.
  • Singh, R.; Srivastava, M.; Shukla, A. Environmental Sustainability of Bioethanol Production from Rice Straw in India: A Review. Renew. Sustain. Energy Rev. 2016, 54, 202–216. DOI: 10.1016/j.rser.2015.10.005.
  • Bhattacharyya, P.; Bisen, J.; Bhaduri, D.; Priyadarsini, S.; Munda, S.; Chakraborti, M.; Adak, T.; Panneerselvam, P.; Mukherjee, A. K.; Swain, S. L.; et al. Turn the Wheel from Waste to Wealth: Economic and Environmental Gain of Sustainable Rice Straw Management Practices over Field Burning in Reference to India. Sci. Total Environ. 2021, 775, 145896. DOI: 10.1016/j.scitotenv.2021.145896.
  • Oanh, N. T. K.; Bich, T. L.; Tipayarom, D.; Manadhar, B. R.; Prapat, P.; Simpson, C. D.; Liu, L.-J. S. Characterization of Particulate Matter Emission from Open Burning of Rice Straw. Atmos. Environ. 2011, 45, 493–502. DOI: 10.1016/j.atmosenv.2010.09.023.
  • Sahoo, J. K.; Hota, A.; Singh, C.; Barik, S.; Sahu, N.; Sahoo, S. K.; Sahu, M. K.; Sahoo, H. Rice Husk and Rice Straw Based Materials for Toxic Metals and Dyes Removal: A Comprehensive and Critical Review. Int. J. Environ. Anal. Chem. 2021, 1, 1–23. DOI: 10.1080/03067319.2021.2003349.
  • Adetunji, A. I.; Olaniran, A. O. Treatment of Industrial Oily Wastewater by Advanced Technologies: A Review. Appl. Water Sci. 2021, 11, 1–19. DOI: 10.1007/s13201-021-01430-4.
  • Van Gaelen, P.; Springael, D.; Smets, I. Lipid Hydrolysis Monitoring in Wastewater Treatment: Proof-of-Concept for a High Throughput Vegetable Oil Emulsion Based Assay. Water Pract. Technol. 2021, 16, 605–620. DOI: 10.2166/wpt.2021.022.
  • Borowski, S.; Kubacki, P. Co-Digestion of Pig Slaughterhouse Waste with Sewage Sludge. Waste Manag. 2015, 40, 119–126. DOI: 10.1016/j.wasman.2015.03.021.
  • Matsumiya, Y.; Wakita, D.; Kimura, A.; Sanpa, S.; Kubo, M. Isolation and Characterization of a Lipid-Degrading Bacterium and Its Application to Lipid-Containing Wastewater Treatment. J. Biosci. Bioeng. 2007, 103, 325–330. 10.1263/jbb.103.325.
  • Kumar, A.; Gudiukaite, R.; Gricajeva, A.; Sadauskas, M.; Malunavicius, V.; Kamyab, H.; Sharma, S.; Sharma, T.; Pant, D. Microbial Lipolytic Enzymes–Promising Energy-Efficient Biocatalysts in Bioremediation. Energy 2020, 192, 116674. DOI: 10.1016/j.energy.2019.116674.
  • Işık, C.; Saraç, N.; Teke, M.; Uğur, A. A New Bioremediation Method for Removal of Wastewater Containing Oils with High Oleic Acid Composition: Acinetobacter haemolyticus Lipase Immobilized on Eggshell Membrane with Improved Stabilities. New J. Chem. 2021, 45, 1984–1992. DOI: 10.1039/D0NJ05175F.
  • Mueller, S. A.; Kim, B. R.; Anderson, J. E.; Gaslightwala, A.; Szafranski, M. J.; Gaines, W. A. Removal of Oil and Grease and Chemical Oxygen Demand from Oily Automotive Wastewater by Adsorption after Chemical de-Emulsification. Pract. Period. Hazard. Toxic. Radioact. Waste Manage. 2003, 7, 156–162. DOI: 10.1061/(ASCE)1090-025X(2003)7:3(156).
  • Leal, M. C.; Freire, D. M.; Cammarota, M. C.; Sant’Anna, G. L. Jr. Effect of Enzymatic Hydrolysis on Anaerobic Treatment of Dairy Wastewater. Process Biochem. 2006, 41, 1173–1178. DOI: 10.1016/j.procbio.2005.12.014.
  • Ferreira Mota, G.; Germano de Sousa, I.; Luiz Barros de Oliveira, A.; Luthierre Gama Cavalcante, A.; da Silva Moreira, K.; Thálysson Tavares Cavalcante, F.; Erick da Silva Souza, J.; Rafael de Aguiar Falcão, Í.; Guimarães Rocha, T.; Bussons Rodrigues Valério, R.; et al. Biodiesel Production from Microalgae Using Lipase-Based Catalysts: Current Challenges and Prospects. Algal Res. 2022, 62, 102616. DOI: 10.1016/j.algal.2021.102616.
  • Cavalcante, F. T. T.; da Fonseca, A. M.; Alexandre, J.; dos Santos, J. C. A Stepwise Docking and Molecular Dynamics Approach for Enzymatic Biolubricant Production Using Lipase Eversa® Transform as a Biocatalyst. Ind. Crops Prod. 2022, 187, 115450. DOI: 10.1016/j.indcrop.2022.115450.
  • da Fonseca, A. M.; de Freitas, Í. B.; Soares, N. B.; de Araújo, F. A. M.; Gaieta, E. M.; dos Santos, J. C. S.; Sobrinho, A. C. N.; Marinho, E. S.; Colares, R. P. Synthesis, Biological Activity, and In Silico Study of Bioesters Derived from Bixin by the CALB Enzyme. Biointerface Res. Appl. Chem. 2022, 12, 5901–5917. DOI: 10.33263/BRIAC125.59015917.
  • Verdasco-Martin, C. M.; Villalba, M.; dos Santos, J. C.; Tobajas, M.; Fernandez-Lafuente, R.; Otero, C. Effect of Chemical Modification of Novozym 435 on Its Performance in the Alcoholysis of Camelina Oil. Biochem. Eng. J. 2016, 111, 75–86. DOI: 10.1016/j.bej.2016.03.004.
  • Lima, P. J. M.; da Silva, R. M.; Neto, C.; Gomes e Silva, N. C.; Souza, J.; Nunes, Y. L.; Sousa dos Santos, J. C. An Overview on the Conversion of Glycerol to Value‐Added Industrial Products via Chemical and Biochemical Routes. Biotech. App. Biochem. 2021, 1. DOI: 10.1002/bab.2098.
  • Rios, N. S.; Neto, D. M. A.; Dos Santos, J. C. S.; Fechine, P. B. A.; Fernández-Lafuente, R.; Gonçalves, L. R. B. Comparison of the Immobilization of Lipase from Pseudomonas fluorescens on Divinylsulfone or p-Benzoquinone Activated Support. Int. J. Biol. Macromol. 2019, 134, 936–945. DOI: 10.1016/j.ijbiomac.2019.05.106.
  • Chattopadhyay, S.; Sen, R. A Comparative Performance Evaluation of Jute and Eggshell Matrices to Immobilize Pancreatic Lipase. Process Biochem. 2012, 47, 749–757. DOI: 10.1016/j.procbio.2012.02.003.
  • Fernandez-Lopez, L.; Bartolome-Cabrero, R.; Rodriguez, M. D.; Dos Santos, C. S.; Rueda, N.; Fernandez-Lafuente, R. Stabilizing Effects of Cations on Lipases Depend on the Immobilization Protocol. RSC Adv. 2015, 5, 83868–83875. DOI: 10.1039/C5RA18344H.
  • Lima, G. V.; da Silva, M. R.; de Sousa Fonseca, T.; de Lima, L. B.; de Oliveira, M. d C. F.; de Lemos, T. L. G.; Zampieri, D.; dos Santos, J. C. S.; Rios, N. S.; Gonçalves, L. R. B.; et al. Chemoenzymatic Synthesis of (S)-Pindolol Using Lipases. Appl. Catal. A 2017, 546, 7–14. DOI: 10.1016/j.apcata.2017.08.003.
  • Moreira, K. d S.; de Oliveira, A. L. B.; Júnior, L. S. d M.; Monteiro, R. R. C.; da Rocha, T. N.; Menezes, F. L.; Fechine, L. M. U. D.; Denardin, J. C.; Michea, S.; Freire, R. M.; et al. Lipase from Rhizomucor miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Front. Bioeng. Biotechnol. 2020, 8, 693. 10.3389/fbioe.2020.00693.
  • Silva, A. R.; Alexandre, J. Y.; Souza, J. E.; Neto, J. G. L.; de Sousa Júnior, P. G.; Rocha, M. V.; Dos Santos, J. C. The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules 2022, 27, 4529. DOI: 10.3390/molecules27144529.
  • Nunes, Y. L.; de Menezes, F. L.; de Sousa, I. G.; Cavalcante, A. L. G.; Cavalcante, F. T. T.; da Silva Moreira, K.; de Oliveira, A. L. B.; Mota, G. F.; da Silva Souza, J. E.; de Aguiar Falcão, I. R.; et al. Chemical and Physical Chitosan Modification for Designing Enzymatic Industrial Biocatalysts: How to Choose the Best Strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. DOI: 10.1016/j.ijbiomac.2021.04.004.
  • Zahirinejad, S.; Hemmati, R.; Homaei, A.; Dinari, A.; Hosseinkhani, S.; Mohammadi, S.; Vianello, F. Nano-Organic Supports for Enzyme Immobilization: Scopes and Perspectives. Colloids Surf. B Biointerfaces 2021, 204, 111774. DOI: 10.1016/j.colsurfb.2021.111774.
  • da S. Moreira, K.; Barros de Oliveira, A. L.; Saraiva de Moura Júnior, L.; Germano de Sousa, I.; Luthierre Gama Cavalcante, A.; Simão Neto, F.; Bussons Rodrigues Valério, R.; Valério Chaves, A.; de Sousa Fonseca, T.; Morais Vieira Cruz, D.; et al. Taguchi Design-Assisted Co-Immobilization of Lipase A and B from Candida antarctica onto Chitosan: Characterization, Kinetic Resolution Application, and Docking Studies. Chem. Eng. Res. Des. 2022, 177, 223–244. DOI: 10.1016/j.cherd.2021.10.033.
  • Liu, D. M.; Dong, C. Recent Advances in Nano-Carrier Immobilized Enzymes and Their Applications. Process Biochem. 2020, 92, 464–475. DOI: 10.1016/j.procbio.2020.02.005.
  • Monteiro, R. R.; de Oliveira, A. L. B.; de Menezes, F. L.; de Souza, M. C. M.; Fechine, P. B.; dos Santos, J. C. Improvement of Enzymatic Activity and Stability of Lipase a from Candida antartica onto Halloysite Nanotubes with Taguchi Method for Optimized Immobilization. Appl. Clay Sci. 2022, 228, 106634. DOI: 10.1016/j.clay.2022.106634.
  • Costa-Silva, T. A.; Carvalho, A. K. F.; Souza, C. R. F.; De Castro, H. F.; Bachmann, L.; Said, S.; Oliveira, W. P. Immobilized Enzyme-Driven Value Enhancement of Lignocellulosic-Based Agricultural Byproducts: Application in Aroma Synthesis. J. Clean. Prod. 2021, 284, 124728. DOI: 10.1016/j.jclepro.2020.124728.
  • Costa-Silva, T. A.; Souza, C. R. F.; Said, S.; Oliveira, W. P. Drying of Enzyme Immobilized on Eco-Friendly Supports. Afr. J. Biotechnol. 2015, 14, 3019–3026. DOI: 10.5897/AJB2015.14830.
  • Otari, S. V.; Patel, S. K.; Kalia, V. C.; Lee, J. K. One-Step Hydrothermal Synthesis of Magnetic Rice Straw for Effective Lipase Immobilization and Its Application in Esterification Reaction. Bioresour. Technol. 2020, 302, 122887. DOI: 10.1016/j.biortech.2020.122887.
  • Lima, L. C.; Peres, D. G.; Mendes, A. A. Kinetic and Thermodynamic Studies on the Enzymatic Synthesis of Wax Ester Catalyzed by Lipase Immobilized on Glutaraldehyde-Activated Rice Husk Particles. Bioprocess Biosyst. Eng. 2018, 41, 991–1002. 10.1007/s00449-018-1929-9.
  • Paul, D.; Saha, S.; Pramanick, S.; Chattopadhyay, S. Standardization of Process Parameters for the Maximum Production of Extracellular Lipase by Bacteria, Isolated from Indigenous Sources. Int. Res. J. Eng. Technol. 2015, 2, 682–688.
  • Li, S.; Zhong, L.; Wang, H.; Li, J.; Cheng, H.; Ma, Q. Process Optimization of Polyphenol Oxidase Immobilization: Isotherm, Kinetic, Thermodynamic and Removal of Phenolic Compounds. Int. J. Biol. Macromol. 2021, 185, 792–803. DOI: 10.1016/j.ijbiomac.2021.06.188.
  • Lv, J. S.; Liu, X. Y.; Xu, J. X.; Deng, Y. F.; Wu, Z.; Wang, Y. M.; Fan, M. Y.; Xu, H. Preparation and Properties of Adsorption Material from Corn Stalks Core When Used for Enzyme Immobilization and the Subsequent Activities of the Adsorbed Enzymes. Ind. Crops Prod. 2013, 50, 787–796. DOI: 10.1016/j.indcrop.2013.08.068.
  • Abaide, E. R.; Dotto, G. L.; Tres, M. V.; Zabot, G. L.; Mazutti, M. A. Adsorption of 2–Nitrophenol Using Rice Straw and Rice Husks Hydrolyzed by Subcritical Water. Bioresour. Technol. 2019, 284, 25–35. DOI: 10.1016/j.biortech.2019.03.110.
  • Zhang, Y.; Ghaly, A. E.; Li, B. Physical Properties of Rice Residues as Affected by Variety and Climatic and Cultivation Conditions in Three Continents. Am. J. Appl. Sci. 2012, 9, 1757–1768. DOI: 10.3844/ajassp.2012.1757.1768.
  • Sharifi, M.; Robatjazi, S. M.; Sadri, M.; Mosaabadi, J. M. Covalent Immobilization of Organophosphorus Hydrolase Enzyme on Chemically Modified Cellulose Microfibers: Statistical Optimization and Characterization. React. Funct. Polym. 2018, 124, 162–170. DOI: 10.1016/j.reactfunctpolym.2018.01.019.
  • Cespugli, M.; Lotteria, S.; Navarini, L.; Lonzarich, V.; Del Terra, L.; Vita, F.; Zweyer, M.; Baldini, G.; Ferrario, V.; Ebert, C.; Gardossi, L. Rice Husk as an Inexpensive Renewable Immobilization Carrier for Biocatalysts Employed in the Food, Cosmetic and Polymer Sectors. Catalysts 2018, 8, 471–493. DOI: 10.3390/catal8100471.
  • Chen, Z.; Xu, Y.; Shivkumar, S. Microstructure and Tensile Properties of Various Varieties of Rice Husk. J. Sci. Food Agric. 2018, 98, 1061–1070. 10.1002/jsfa.8556.
  • Li, F. H.; Hu, H. J.; Yao, R. S.; Wang, H.; Li, M. M. Structure and Saccharification of Rice Straw Pretreated with Microwave-Assisted Dilute Lye. Ind. Eng. Chem. Res. 2012, 51, 6270–6274. DOI: 10.1021/ie202547w.
  • Chatterjee, S.; Yadav, D.; Barbora, L.; Mahanta, P.; Goswami, P. Silk-Cocoon Matrix Immobilized Lipase Catalyzed Transesterification of Sunflower Oil for Production of Biodiesel. Journal of Catalysts 2014, 2014, 1–7. DOI: http://dx.doi.org/10.1155/2014/868535.
  • Li, N.; Xia, Q.; Li, Y.; Hou, X.; Niu, M.; Ping, Q.; Xiao, H. Immobilizing Laccase on Modified Cellulose/C.F. Beads to Degrade Chlorinated Biphenyl in Wastewater. Polymers 2018, 10, 798–809. DOI: 10.3390/polym10070798.
  • Cristóvão, R. O.; Tavares, A. P.; Brígida, A. I.; Loureiro, J. M.; Boaventura, R. A.; Macedo, E. A.; Coelho, M. A. Z. Immobilization of Commercial Laccase onto Green Coconut Fiber by Adsorption and Its Application for Reactive Textile Dyes Degradation. J. Mol. Catal. B Enzym. 2011, 72, 6–12. DOI: 10.1016/j.molcatb.2011.04.014.
  • de Andrade Silva, T.; Keijok, W. J.; Guimarães, M. C. C.; Cassini, S. T. A.; de Oliveira, J. P. Impact of Immobilization Strategies on the Activity and Recyclability of Lipases in Nanomagnetic Supports. Sci. Rep. 2022, 12, 1–11. DOI: 10.1038/s41598-022-10721-y.
  • Akhlaghi, N.; Najafpour-Darzi, G. Preparation of Immobilized Lipase on Co2+-Chelated Carboxymethyl Cellulose Based MnFe2O4 Magnetic Nanocomposite Particles. Mol. Catal. 2022, 519, 112118. DOI: 10.1016/j.mcat.2022.112118.
  • Işik, C.; Arabaci, G.; Doğaç, Y. I.; Deveci, İ.; Teke, M. Synthesis and Characterization of Electrospun PVA/Zn2+ Metal Composite Nanofibers for Lipase Immobilization with Effective Thermal, pH Stabilities and Reusability. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1226–1235. DOI: 10.1016/j.msec.2019.02.031.
  • Sanchez, A.; Cruz, J.; Rueda, N.; dos Santos, J. C.; Torres, R.; Ortiz, C.; Villalonga, R.; Fernandez-Lafuente, R. Inactivation of Immobilized Trypsin under Dissimilar Conditions Produces Trypsin Molecules with Different Structures. RSC Adv. 2016, 6, 27329–27334. DOI: 10.1039/C6RA03627A.
  • Chattopadhyay, S.; Karemore, A.; Das, S.; Deysarkar, A.; Sen, R. Biocatalytic Production of Biodiesel from Cottonseed Oil: Standardization of Process Parameters and Comparison of Fuel Characteristics. Appl. Energy 2011, 88, 1251–1256. DOI: 10.1016/j.apenergy.2010.10.007.
  • Yao, G.; Liu, K.; Wang, S.; Huo, H.; Wang, S. Metal Ions Coordinated Immobilization of Phenylalanine Dehydrogenase by GO‐PEI with High Activity Recovery and Enhanced Stability. J. Chem. Technol. Biotechnol. 2021, 96, 1049–1056. DOI: 10.1002/jctb.6616.
  • Lu, J.; Wang, P.; Ke, Z.; Liu, X.; Kang, Q.; Hao, L. Effect of Metal Ions on the Enzymatic Hydrolysis of Hemp Seed Oil by Lipase Candida sp. 99–125. Int. J. Biol. Macromol. 2018, 114, 922–928. DOI: 10.1016/j.ijbiomac.2018.03.168.
  • Pinheiro, M. P.; Rios, N. S.; Fonseca, T. D. S.; Bezerra, F. D. A.; Rodríguez‐Castellón, E.; Fernandez‐Lafuente, R.; Carlos de Mattos, M.; Dos Santos, J. C.; Gonçalves, L. R. Kinetic Resolution of Drug Intermediates Catalyzed by Lipase B from Candida antarctica Immobilized on Immobead‐350. Biotechnol. Prog. 2018, 34, 878–889. DOI: 10.1002/btpr.2630.
  • Cavalcante, F. T. T.; Neto, F. S.; de Aguiar Falcão, I. R.; da Silva Souza, J. E.; de Moura Junior, L. S.; da Silva Sousa, P.; Rocha, T. G.; de Sousa, I. G.; de Lima Gomes, P. H.; de Souza, M. C. M.; dos Santos, J. C. Opportunities for Improving Biodiesel Production via Lipase Catalysis. Fuel 2021, 288, 119577. DOI: 10.1016/j.fuel.2020.119577.
  • Al-Najada, A. R.; Almulaiky, Y. Q.; Aldhahri, M.; El-Shishtawy, R. M.; Mohamed, S. A.; Baeshen, M.; Al-Farga, A.; Abdulaal, W. H.; Al-Harbi, S. A. Immobilisation of α-Amylase on Activated Amidrazone Acrylic Fabric: A New Approach for the Enhancement of Enzyme Stability and Reusability. Sci. Rep. 2019, 9, 1–9. DOI: 10.1038/s41598-019-49206-w.
  • Galvão, W. S.; Pinheiro, B. B.; Golçalves, L. R. B.; de Mattos, M. C.; Fonseca, T. S.; Regis, T.; Zampieri, D.; dos Santos, J. C. S.; Costa, L. S.; Correa, M. A.; et al. Novel Nanohybrid Biocatalyst: Application in the Kinetic Resolution of Secondary Alcohols. J. Mater. Sci. 2018, 53, 14121–14137. DOI: 10.1007/s10853-018-2641-5.
  • Carrera, C. S.; Dardanelli, J. L. Water Deficit Modulates the Relationship between Temperature and Unsaturated Fatty Acid Profile in Soybean Seed Oil. Crop Sci. 2017, 57, 3179–3189. DOI: 10.2135/cropsci2017.04.0214.
  • Bacha, A. B.; Abid, I.; Nehdi, I.; Horchani, H. Hydrolysis of Oils in the Wadi Hanifah River in Saudi Arabia by Free and Immobilized Staphylococcus aureus ALA1 Liapse. Environ. Prog. Sustainable Energy 2019, 38, e13000–8. DOI: 10.1002/ep.13000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.