128
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Macroporous adsorptive resin-assisted enrichment of polyphenol from Psidium guajava leaves improved its in vitro antioxidant and anti-hemolytic properties

, , , , &

References

  • Chahar, M. K.; Sharma, N.; Dobhal, M. P.; Joshi, Y. C. Flavonoids: A Versatile Source of Anticancer Drugs. Pharmacogn. Rev. 2011, 5, 1–12. DOI: 10.4103/0973-7847.79093.
  • Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. DOI: 10.1007/s11101-018-9591-z.
  • Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phytother. Res. 2019, 33, 13–40. DOI: 10.1002/ptr.6208.
  • Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87.
  • Chávez-González, M. L.; Sepúlveda, L.; Verma, D. K.; Luna-García, H. A.; Rodríguez-Durán, L. V.; Ilina, A.; Aguilar, C. N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. DOI: 10.3390/pr8040434.
  • Rodriguez De Luna, S. L.; Ramirez-Garza, R. E.; Serna Sald’ivar, S. O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci World J 2020, 2020,6792069. DOI: 10.1155/2020/6792069.
  • Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Appl. Sci. 2019, 9, 4169. DOI: 10.3390/app9194169.
  • Chong, K. Y.; Stefanova, R.; Zhang, J.; Brooks, M. S.-L. Aqueous Two-Phase Extraction of Bioactive Compounds from Haskap Leaves (Lonicera caerulea): Comparison of Salt/Ethanol and Sugar/Propanol Systems. Sep. Purif. Technol. 2020, 252, 117399. DOI: 10.1016/j.seppur.2020.117399.
  • Conway, W. D. Countercurrent Chromatography and High Speed Countercurrent Chromatography: Instrumentation. Anal. Chim. Acta. 2000, 181, 49.
  • Che, Z. M.; Lee, S. Y.; Teo, C. Y.; Shaari, K. Adsorption and Desorption Properties of Total Flavonoids from Oil Palm (Elaeis guineensis Jacq.) Mature Leaf on Macroporous Adsorption Resins. Molecules 2020, 25, 778. DOI: 10.3390/molecules25040778.
  • Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.; Li, B. Anthocyanin and Flavonoid Production from Perilla Frutescens: Pilot Plant Scale Processing Including Cross-Flow Microfiltration and Reverse Osmosis. J. Agric. Food Chem. 2006, 54, 4297–4303. DOI: 10.1021/jf0604079.
  • Li, J.; Chase, H. A. Development of Adsorptive (Non-Ionic) Macroporous Resins and Their Uses in the Purification of Pharmacologically-Active Natural Products from Plant Sources. Nat. Prod. Rep. 2010, 27, 1493–1510. DOI: 10.1039/c0np00015a.
  • Wang, B.; Prinsen, P.; Wang, H.; Bai, Z.; Wang, H.; Luque, R.; Xuan, J. Macroporous Materials: Microfluidic Fabrication, Functionalization and Applications. Chem. Soc. Rev. 2017, 46, 855–914. DOI: 10.1039/c5cs00065c.
  • Ma, T.; Sun, X.; Tian, C.; Luo, J.; Zheng, C.; Zhan, J. Enrichment and Purification of Polyphenol Extract from Sphallerocarpus gracilis Stems and Leaves and In Vitro Evaluation of DNA Damage-Protective Activity and Inhibitory Effects of $α$-Amylase and $α$-Glucosidase. Molecules 2015, 20, 21442–21457. DOI: 10.3390/molecules201219780.
  • Xiao, R.; Li-Mei, Z.; Xing-Xing, G.; Liu-Ye, Y.; Huan, Z.; Zhi-Yong, Z.; Qiang, W.; De-An, J. Separation and Purification of Flavonoid from Taxus Remainder Extracts Free of Taxoids Using Polystyrene and Polyamide Resin. J. Sep. Sci. 2013, 36, 1925–1934. DOI: 10.1002/jssc.201201189.
  • Li, A.; Sun, A.; Liu, R.; Zhang, Y.; Cui, J. An Efficient Preparative Procedure for Main Flavonoids from the Peel of Trichosanthes Kirilowii Maxim. Using Polyamide Resin Followed by Semi-Preparative High Performance Liquid Chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 965, 150–157. DOI: 10.1016/j.jchromb.2014.06.003.
  • Wang, X.; Su, J.; Chu, X.; Zhang, X.; Kan, Q.; Liu, R.; Fu, X. Adsorption and Desorption Characteristics of Total Flavonoids from Acanthopanax senticosus on Macroporous Adsorption Resins. Molecules 2021, 26, 4162. DOI: 10.3390/molecules26144162.
  • Yang, X.; Bai, Z.-F.; Zhang, D.-W.; Zhang, Y.; Cui, H.; Zhou, H.-L. Enrichment of Flavonoid-Rich Extract from Bidens bipinnata L. by Macroporous Resin Using Response Surface Methodology, UHPLC–Q-TOF MS/MS-Assisted Characterization and Comprehensive Evaluation of Its Bioactivities by Analytical Hierarchy Process. Biomed. Chromatogr. 2020, 34, e4933. DOI: 10.1002/bmc.4933.
  • Zhang, Y.; Jiao, J.; Liu, C.; Wu, X.; Zhang, Y. Isolation and Purification of Four Flavone C-Glycosides from Antioxidant of Bamboo Leaves by Macroporous Resin Column Chromatography and Preparative High-Performance Liquid Chromatography. Food Chem. 2008, 107, 1326–1336.
  • Hou, M.; Hu, W.; Xiu, Z.; Jiang, A.; Men, L.; Hao, K.; Sun, X.; Cao, D. Preparative Purification of Total Flavonoids from Sophora tonkinensis Gagnep. by Macroporous Resin Column Chromatography and Comparative Analysis of Flavonoid Profiles by HPLC-PAD. Molecules 2019, 24, 3200. DOI: 10.3390/molecules24173200.
  • de Lima, R. K.; Cardoso M das, G.; Andrade, M. A.; Nascimento, E. A.; de Morais, S. A. L.; Nelson, D. L. Composition of the Essential Oil from the Leaves of Tree Domestic Varieties and One Wild Variety of the Guava Plant (Psidium guajava L., Myrtaceae). Rev. Bras. Farmacogn. 2010, 20, 41–44. DOI: 10.1590/S0102-695X2010000100009.
  • Morais-Braga, M. F. B.; Carneiro, J. N. P.; Machado, A. J. T.; Sales, D. L.; Dos Santos, A. T. L.; Boligon, A. A.; Athayde, M. L.; Menezes, I. R. A.; Souza, D. S. L.; Costa, J. G. M.; Coutinho, H. D. M. Phenolic Composition and Medicinal Usage of Psidium guajava Linn.: Antifungal Activity or Inhibition of Virulence? Saudi J. Biol. Sci. 2017, 24, 302–313. DOI: 10.1016/j.sjbs.2015.09.028.
  • Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M. S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021, 10, 752. DOI: 10.3390/foods10040752.
  • Rai, M. K.; Phulwaria, M.; Shekhawat, N. S. Transferability of Simple Sequence Repeat (SSR) Markers Developed in Guava (Psidium guajava L.) to Four Myrtaceae Species. Mol. Biol. Rep. 2013, 40, 5067–5071. DOI: 10.1007/s11033-013-2608-1.
  • Daswani, P. G.; Gholkar, M. S.; Birdi, T. J. Psidium Guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacogn. Rev. 2017, 11, 167–174. DOI: 10.4103/phrev.phrev_17_17.
  • Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Chapter 15 - Extraction of Polyphenols from Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants (Second Edition), Watson, R. R., Ed.; Academic Press, 2019, pp 243–259. DOI: 10.1016/B978-0-12-813768-0.00025-6.
  • Tavassoli, P.; Afshar, A. S. Influence of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Analysis of Phenolic and Flavonoid Compounds in Marshmallow. (Althaea Officinalis L.). 3 Biotech 2018, 8, 1–8.
  • Ainsworth, E. A.; Gillespie, K. M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. DOI: 10.1038/nprot.2007.102.
  • Awah, F. M.; Uzoegwu, P. N.; Ifeonu, P.; Oyugi, J. O.; Rutherford, J.; Yao, X.; Fehrmann, F.; Fowke, K. R.; Eze, M. O. Free Radical Scavenging Activity, Phenolic Contents and Cytotoxicity of Selected Nigerian Medicinal Plants. Food Chem 2012, 131, 1279–1286. DOI: 10.1016/j.foodchem.2011.09.118.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. [14] Analysis of total phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178.
  • Wu, S.; Wang, Y.; Gong, G.; Li, F.; Ren, H.; Liu, Y. Adsorption and Desorption Properties of Macroporous Resins for Flavonoids from the Extract of Chinese Wolfberry (Lycium barbarum L.). Food Bioprod. Process 2015, 93, 148–155. DOI: 10.1016/j.fbp.2013.12.006.
  • Zhang, L.; Wu, T.; Xiao, W.; Wang, Z.; Ding, G.; Zhao, L. Enrichment and Purification of Total Ginkgo Flavonoid O-Glycosides from Ginkgo biloba Extract with Macroporous Resin and Evaluation of Anti-Inflammation Activities In Vitro. Molecules 2018, 23, 1167. DOI: 10.3390/molecules23051167.
  • Yang, Z.; Tang, H.; Shao, Q.; Bilia, A. R.; Wang, Y.; Zhao, X. Enrichment and Purification of the Bioactive Flavonoids from Flower of Abelmoschus manihot (L.) Medic Using Macroporous Resins. Molecules 2018, 23, 2649. DOI: 10.3390/molecules23102649.
  • Du, H.; Wang, H.; Yu, J.; Liang, C.; Ye, W.; Li, P. Enrichment and Purification of Total Flavonoid C-Glycosides from Abrus mollis Extracts with Macroporous Resins. Ind. Eng. Chem. Res. 2012, 51, 7349–7354. DOI: 10.1021/ie3004094.
  • Fu, R.; Wang, Y.; Yu, F.; Wu, X.; Gu, Y.; Chen, W. Optimization of the Macroporous Resin-Based Adsorption of Apple Polyphenol Through Response Surface Methodology. Toxicol. Environ. Chem. 2016, 98, 479–491. DOI: 10.1080/02772248.2015.1123490.
  • Ren, J.; Zheng, Y.; Lin, Z.; Han, X.; Liao, W. Macroporous Resin Purification and Characterization of Flavonoids from Platycladus orientalis (L.) Franco and Their Effects on Macrophage Inflammatory Response. Food Funct. 2017, 8, 86–95. DOI: 10.1039/c6fo01474g.
  • De Souza, R. V.; De Giovani, W. F. Antioxidant Properties of Complexes of Flavonoids with Metal Ions. Redox Rep. 2004, 9, 97–104. DOI: 10.1179/135100004225003897.
  • Benzie, I. F. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Reitz, L. K.; Schroeder, J.; Longo, G. Z.; Boaventura, B. C. B.; Di Pietro, P. F. Dietary Antioxidant Capacity Promotes a Protective Effect against Exacerbated Oxidative Stress in Women Undergoing Adjuvant Treatment for Breast Cancer in a Prospective Study. Nutrients 2021, 13, 4324. DOI: 10.3390/nu13124324.
  • Soni, G. L.; Bansal, A. K.; Malhotra, N. Role of Ascorbic Acid in Lead Acetate Induced Lipid Peroxidation and Hemolysis in Human RBC. Indian J. Clin. Biochem. 1992, 7, 196–198. DOI: 10.1007/BF02886678.
  • Casado, M. F.; Cecchini, A. L.; Simao, A. N. C.; Oliveira, R. D.; Cecchini, R. Free Radical-Mediated Pre-Hemolytic Injury in Human Red Blood Cells Subjected to Lead Acetate as Evaluated by Chemiluminescence. Food Chem. Toxicol. 2007, 45, 945–952. DOI: 10.1016/j.fct.2006.12.001.
  • Mrugesh, T.; Dipa, L.; Manishika, G. Effect of Lead on Human Erythrocytes: An In Vitro Study. Acta Pol. Pharm. 2011, 68, 653–656.
  • Dairam, A.; Fogel, R.; Daya, S.; Limson, J. L. Antioxidant and Iron-Binding Properties of Curcumin, Capsaicin, and S-Allylcysteine Reduce Oxidative Stress in Rat Brain Homogenate. J. Agric. Food Chem. 2008, 56, 3350–3356. DOI: 10.1021/jf0734931.
  • Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. DOI: 10.1016/0003-2697(79)90738-3.
  • Nagpal, T.; Alam, S.; Khare, S. K.; Satya, S.; Chaturvedi, S.; Sahu, J. K. Effect of Psidium guajava Leaves Extracts on Thermo-Lipid Oxidation and Maillard Pathway Born Food Toxicant Acrylamide in Indian Staple Food. J. Food Sci. Technol. 2022, 59, 86–94. DOI: 10.1007/s13197-021-04984-y.
  • Sahoo, S.; Kharkar, P. S.; Sahu, N. U.; S, B. Anxiolytic Activity of Psidium guajava in Mice Subjected to Chronic Restraint Stress and Effect on Neurotransmitters in Brain. Phyther Res. 2021, 35, 1399–1415. DOI: 10.1002/ptr.6900.
  • Camarena-Tello, J.; Martínez-Flores, H.; Garnica-Romo, M.; Padilla-Ramírez, J.; Saavedra-Molina, A.; Alvarez-Cortes, O.; Bartolomé-Camacho, M.; Rodiles-López, J. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities With Leaf Extracts from Two Varieties of Psidium guajava L. Antioxidants 2018, 7, 34. DOI: 10.3390/antiox7030034.
  • Hou, M.; Hu, W.; Xiu, Z.; Shi, Y.; Hao, K.; Cao, D.; Guan, Y.; Yin, H. Efficient Enrichment of Total Flavonoids from Pteris ensiformis Burm. Extracts by Macroporous Adsorption Resins and In Vitro Evaluation of Antioxidant and Antiproliferative Activities. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1138, 121960. DOI: 10.1016/j.jchromb.2019.121960.
  • Wang, X.; Wang, S.; Huang, S.; Zhang, L.; Ge, Z.; Sun, L.; Zong, W. Purification of Polyphenols from Distiller’s Grains by Macroporous Resin and Analysis of the Polyphenolic Components. Molecules 2019, 24, 1284. DOI: 10.3390/molecules24071284.
  • Hartati, R.; Nadifan, H. I.; Fidrianny, I. Crystal Guava (Psidium guajava L.“Crystal”): Evaluation of In Vitro Antioxidant Capacities and Phytochemical Content. ScientificWorldJournal 2020, 2020, 9413727. DOI: 10.1155/2020/9413727.
  • de Graft-Johnson, J.; Nowak, D. Effect of Selected Plant Phenolics on Fe2+-EDTA-H2O2 System Mediated Deoxyribose Oxidation: Molecular Structure-Derived Relationships of anti-and Pro-Oxidant Actions. Molecules 2016, 22, 59. DOI: 10.3390/molecules22010059.
  • Marmitt, D. J.; Bitencourt, S.; da Silva, G. R.; Rempel, C.; Goettert, M. I. Traditional Plants with Antioxidant Properties in Clinical Trials-A Systematic Review. Phytother. Res. 2021, 35, 5647–5667. DOI: 10.1002/ptr.7202.
  • Zhou, D.-D.; Luo, M.; Shang, A.; Mao, Q.-Q.; Li, B.-Y.; Gan, R.-Y.; Li, H.-B. Antioxidant Food Components for the Prevention and Treatment of Cardiovascular Diseases: Effects, Mechanisms, and Clinical Studies. Oxid. Med. Cell. Longevity. 2021, 2021, 1–17. DOI: 10.1155/2021/6627355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.