153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transcriptome analysis reveals that yeast extract inhibits synthesis of prodigiosin by Serratia marcescens SDSPY-136

, , , , , & show all

References

  • Gondil, V. S.; Asif, M.; Bhalla, T. C. Optimization of Physicochemical Parameters Influencing the Production of Prodigiosin from Serratia nematodiphila RL2 and Exploring Its Antibacterial Activity. 3 Biotech. 2017, 7, 338. DOI: 10.1007/s13205-017-0979-z.
  • Sun, S. Q.; Wang, Y. J.; Xu, W.; Zhu, C. J.; Liu, X. X. Optimizing Ultrasound-Assisted Extraction of Prodigiosin by Response Surface Methodology. Prep. Biochem. Biotechnol. 2015, 45, 101–108. DOI: 10.1080/10826068.2013.877029.
  • Suryawanshi, R. K.; Patil, C. D.; Koli, S. H.; Hallsworth, J. E.; Patil, S. V. Antimicrobial Activity of Prodigiosin is Attributable to Plasma-Membrane Damage. Nat. Prod. Res. 2017, 31, 572–577. DOI: 10.1080/14786419.2016.1195380.
  • Clements, T.; Ndlovu, T.; Khan, S.; Khan, W. Biosurfactants Produced by Serratia Species: Classification, Biosynthesis, Production and Application. Appl. Microbiol. Biotechnol. 2019, 103, 589–602. DOI: 10.1007/s00253-018-9520-5.
  • Paul, T.; Bandyopadhyay, T. K.; Mondal, A.; Tiwari, O. N.; Muthuraj, M.; Bhunia, B. A Comprehensive Review on Recent Trends in Production, Purification, and Applications of Prodigiosin. Biomass Conv. Bioref. 2022, 12, 1409–1431. DOI: 10.1007/s13399-020-00928-2.
  • Gao, S.; Guo, W.; Shi, L.; Yu, Y.; Zhang, C.; Yang, H. Characterization of Acetoin Production in a budC Gene Disrupted Mutant of Serratia marcescens G12. J. Ind. Microbiol. Biotechnol. 2014, 41, 1267–1274. DOI: 10.1007/s10295-014-1464-x.
  • Huh, J.-E.; Koo, H.-J.; Kim, K.-H.; Yim, J.-H.; Lee, H.-K.; Sohn, E.-W.; Pyo, S.-N. Immunosuppressive Effect of Prodigiosin on Murine Splenocyte and Macrophages. Biomol. Therap. 2008, 16, 351–355. DOI: 10.4062/biomolther.2008.16.4.351.
  • Darshan, N.; Manonmani, H. K. Prodigiosin Inhibits Motility and Activates Bacterial Cell Death Revealing Molecular Biomarkers of Programmed Cell Death. AMB Express 2016, 6, 50. DOI: 10.1186/s13568-016-0222-z.
  • Wang, Z.; Li, B.; Zhou, L.; Yu, S.; Su, Z.; Song, J.; Sun, Q.; Sha, O.; Wang, X.; Jiang, W.; et al. Prodigiosin Inhibits Wnt/Beta-Catenin Signaling and Exerts Anticancer Activity in Breast Cancer Cells. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 13150–13155. DOI: 10.1073/pnas.1616336113.
  • Danyuo, Y.; Dozie-Nwachukwu, S.; Obayemi, J. D.; Ani, C. J.; Odusanya, O. S.; Oni, Y., Anuku, N., Malatesta, K., Soboyejo, W. O. Swelling of Poly(N-Isopropylacrylamide) P(NIPA)-Based Hydrogels with Bacterial-Synthesized Prodigiosin for Localized Cancer Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 19–29. DOI: 10.1016/j.msec.2015.09.090.
  • Dozie-Nwachukwu, S. O.; Danyuo, Y.; Obayemi, J. D.; Odusanya, O. S.; Malatesta, K.; Soboyejo, W. O. Extraction and Encapsulation of Prodigiosin in Chitosan Microspheres for Targeted Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 268–278. DOI: 10.1016/j.msec.2016.09.078.
  • Yang, P.; Qian, J.; Xiao, W.; Zheng, Z.; Zhu, M. Bioactive Compound Prodigiosin In Vivo Affecting the Nutrient Metabolism of Weaned Rats. ACS Omega 2018, 3, 17474–17480. DOI: 10.1021/acsomega.8b02476.
  • Hu, D. X.; Withall, D. M.; Challis, G. L.; Thomson, R. J. Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products. Chem. Rev. 2016, 116, 7818–7853. DOI: 10.1021/acs.chemrev.6b00024.
  • Gjadhar, S.; Mellem, J. J. Isolation and Characterization of a Microbial Pigment Obtained from Serratia marcescens as a Natural Food Colourant. Ann. Univ. Dun. J. Galat. Fasc. IV Food Technol. 2019, 43, 137–154. DOI: 10.35219/foodtechnology.2019.1.11.
  • Xu, H.; Wang, S.; Tian, Y.; Zhu, K.; Zhu, L.; Zhou, S.; Huang, Y.; He, Q.; Liu, J. 2-Keto-D-Gluconic Acid and Prodigiosin Producing by a Serratia marcescens. Prep. Biochem. Biotechnol. 2021, 51, 678–685. DOI: 10.1080/10826068.2020.1852417.
  • Guryanov, I.; Naumenko, E.; Akhatova, F.; Lazzara, G.; Cavallaro, G.; Nigamatzyanova, L.; Fakhrullin, R. Selective Cytotoxic Activity of Prodigiosin@Halloysite Nanoformulation. Front. Bioeng. Biotechnol. 2020, 8, 424. DOI: 10.3389/fbioe.2020.00424.
  • Williamson, N. R.; Fineran, P. C.; Leeper, F. J.; Salmond, G. P. The Biosynthesis and Regulation of Bacterial Prodiginines. Nat. Rev. Microbiol. 2006, 4, 887–899. DOI: 10.1038/nrmicro1531.
  • Pan, X.; Tang, M.; You, J.; Osire, T.; Sun, C.; Fu, W.; Yi, G.; Yang, T.; Yang, S. T.; Rao, Z. PsrA Is a Novel Regulator Contributes to Antibiotic Synthesis, Bacterial Virulence, Cell Motility and Extracellular Polysaccharides Production in Serratia marcescens. Nucleic Acids Res. 2022, 50, 127–148. DOI: 10.1093/nar/gkab1186.
  • Sun, Y.; Wang, L.; Pan, X.; Osire, T.; Fang, H.; Zhang, H.; Yang, S. T.; Yang, T.; Rao, Z. Improved Prodigiosin Production by Relieving CpxR Temperature-Sensitive Inhibition. Front. Bioeng. Biotechnol. 2020, 8, 344. DOI: 10.3389/fbioe.2020.00344.
  • Pan, X.; Sun, C.; Tang, M.; You, J.; Osire, T.; Zhao, Y.; Xu, M.; Zhang, X.; Shao, M.; Yang, S.; et al. LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H2O2 Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Appl. Environ. Microbiol. 2020, 86, e02241-19. DOI: 10.1128/AEM.02241-19.
  • Casullo de Araújo, H. W.; Fukushima, K.; Takaki, G. M. C. Prodigiosin Production by Serratia marcescens UCP 1549 Using Renewable-Resources as a Low Cost Substrate. Molecules 2010, 15, 6931–6940. DOI: 10.3390/molecules15106931.
  • Liu, W.; Yang, J.; Tian, Y.; Zhou, X.; Wang, S.; Zhu, J.; Sun, D.; Liu, C. An In Situ Extractive Fermentation Strategy for Enhancing Prodigiosin Production from Serratia marcescens BWL1001 and Its Application to Inhibiting the Growth of Microcystis aeruginosa. Biochem. Eng. J. 2021, 166, 107836. DOI: 10.1016/j.bej.2020.107836.
  • Kurbanoglu, E. B.; Ozdal, M.; Ozdal, O. G.; Algur, O. F. Enhanced production of Prodigiosin by Serratia marcescens MO-1 Using Ram Horn Peptone. Braz. J. Microbiol. 2015, 46, 631–637. DOI: 10.1590/S1517-838246246220131143.
  • Khayyat, A. N.; Hegazy, W. A. H.; Shaldam, M. A.; Mosbah, R.; Almalki, A. J.; Ibrahim, T. S.; Khayat, M. T.; Khafagy, E. S.; Soliman, W. E.; Abbas, H. A. Xylitol Inhibits Growth and Blocks Virulence in Serratia marcescens. Microorganisms 2021, 9, 1083. DOI: 10.3390/microorganisms9051083.
  • Zhu, G.; Tan, W.; Xie, L.; Ma, C.; Chen, X.; Zhang, S.; Wei, Y. Mechanisms Underlying the Inhibitory Effects of Cd(2+) on Prodigiosin Synthesis in Serratia marcescens KMR-3. J. Inorg. Biochem. 2022, 236, 111978. DOI: 10.1016/j.jinorgbio.2022.111978.
  • Sakuraoka, R.; Suzuki, T.; Morohoshi, T. Distribution and Genetic Diversity of Genes Involved in Quorum Sensing and Prodigiosin Biosynthesis in the Complete Genome Sequences of Serratia marcescens. Genome Biol. Evol. 2019, 11, 931–936. DOI: 10.1093/gbe/evz046.
  • Jia, X.; Liu, F.; Zhao, K.; Lin, J.; Fang, Y.; Cai, S.; Lin, C.; Zhang, H.; Chen, L.; Chen, J. Identification of Essential Genes Associated with Prodigiosin Production in Serratia marcescens FZSF02. Front. Microbiol. 2021, 12, 705853. DOI: 10.3389/fmicb.2021.705853.
  • Lin, C.; Jia, X.; Fang, Y.; Chen, L.; Zhang, H.; Lin, R.; Chen, J. Enhanced Production of Prodigiosin by Serratia marcescens FZSF02 in the Form of Pigment Pellets. Electron. J. Biotechnol. 2019, 40, 58–64. DOI: 10.1016/j.ejbt.2019.04.007.
  • Sun, Y.; Wang, L.; Osire, T.; Fu, W.; Yi, G.; Yang, S.-T.; Yang, T.; Rao, Z. Comparative Transcriptome Analysis Reveals Metabolic Regulation of Prodigiosin in Serratia marcescens. Syst. Microbiol. Biomanuf. 2021, 1, 323–335. DOI: 10.1007/s43393-021-00028-w.
  • Yoffe, Y.; David, M.; Kalaora, R.; Povodovski, L.; Friedlander, G.; Feldmesser, E.; Ainbinder, E.; Saada, A.; Bialik, S.; Kimchi, A. Rinat Kalaora Cap-Independent Translation by DAP5 Controls Cell Fate Decisions in Human Embryonic Stem Cells. Genes Dev. 2016, 30, 1991–2004. DOI: 10.1101/gad.285239.
  • Islan, G. A.; Rodenak-Kladniew, B.; Noacco, N.; Duran, N.; Castro, G. R. Prodigiosin: A Promising Biomolecule with Many Potential Biomedical Applications. Bioengineered 2022, 13, 14227–14258. DOI: 10.1080/21655979.2022.2084498.
  • Pan, X.; Sun, C.; Tang, M.; Liu, C.; Zhang, J.; You, J.; Osire, T.; Sun, Y.; Zhao, Y.; Xu, M.; et al. Loss of Serine-Type D-Ala-D-Ala Carboxypeptidase DacA Enhances Prodigiosin Production in Serratia marcescens. Front. Bioeng. Biotechnol. 2019, 7, 367. DOI: 10.3389/fbioe.2019.00367.
  • Xiang, T.; Zhou, W.; Xu, C.; Xu, J.; Liu, R.; Wang, N.; Xu, L.; Zhao, Y.; Luo, M.; Mo, X.; et al. Transcriptomic Analysis Reveals Competitive Growth Advantage of Non-Pigmented Serratia marcescens Mutants. Front. Microbiol. 2021, 12, 793202. DOI: 10.3389/fmicb.2021.793202.
  • Suryawanshi, R. K.; Patil, C. D.; Borase, H. P.; Salunke, B. K.; Patil, S. V. Studies on Production and Biological Potential of Prodigiosin by Serratia marcescens. Appl. Biochem. Biotechnol. 2014, 173, 1209–1221. DOI: 10.1007/s12010-014-0921-3.
  • Ma, K.; Hutchins, A.; Sung, S.-J. S.; Adams, M. W. W. Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon, Pyrococcus furiosus, Functions as a CoA-Dependent Pyruvate Decarboxylase. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 9608–9613. DOI: 10.1073/pnas.94.18.9608.
  • Cavalcanti, J. H.; Esteves-Ferreira, A. A.; Quinhones, C. G.; Pereira-Lima, I. A.; Nunes-Nesi, A.; Fernie, A. R.; Araujo, W. L. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis. Genome Biol. Evol. 2014, 6, 2830–2848. DOI: 10.1093/gbe/evu221.
  • Auffret, M. D.; Dewhurst, R. J.; Duthie, C.-A.; Rooke, J. A.; John Wallace, R.; Freeman, T. C.; Stewart, R.; Watson, M.; Roehe, R. The Rumen Microbiome as a Reservoir of Antimicrobial Resistance and Pathogenicity Genes Is Directly Affected by Diet in Beef Cattle. Microbiome 2017, 5, 159. DOI: 10.1186/s40168-017-0378-z.
  • Ang, S.; Horng, Y.-T.; Shu, J.-C.; Soo, P.-C.; Liu, J.-H.; Yi, W.-C.; Lai, H.-C.; Luh, K.-T.; Ho, S.-W.; Swift, S. The Role of RsmA in the Regulation of Swarming Motility in Serratia marcescens. J. Biomed. Sci. 2001, 8, 160–169. DOI: 10.1007/BF02256408.
  • Doi, Y.; Shimizu, M.; Fujita, T.; Nakamura, A.; Takizawa, N.; Takaya, N. Achromobacter denitrificans Strain YD35 Pyruvate Dehydrogenase Controls NADH Production to Allow Tolerance to Extremely High Nitrite Levels. Appl. Environ. Microbiol. 2014, 80, 1910–1918. DOI: 10.1128/AEM.03316-13.
  • Nedeljković, M.; Sastre, D.; Sundberg, E. Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int. J. Mol. Sci. 2021, 22, 7521. DOI: 10.3390/ijms22147521.
  • Minamino, T.; Imada, K.; Kinoshita, M.; Nakamura, S.; Morimoto, Y. V.; Namba, K. Structural Insight into the Rotational Switching Mechanism of the Bacterial Flagellar Motor. PLOS Biol. 2011, 9, e1000616. DOI: 10.1371/journal.pbio.1000616.
  • Liang, S.; Qi, Y.; Zhao, J.; Li, Y.; Wang, R.; Shao, J.; Liu, X.; An, L.; Yu, F. Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 Gene Cause Leaf Reticulation. Front. Plant Sci. 2017, 8, 2007. DOI: 10.3389/fpls.2017.02007.
  • Watson, G. K.; Cummins, D.; van der Ouderaa, F. J. G. Inhibition of Acid Production by Streptococcus mutans NCTC 10449 by Zinc and the Effect of Metal Speciation. Caries Res. 1991, 25, 431–437. DOI: 10.1159/000261406.
  • Krajewski, S. S.; Joswig, M.; Nagel, M.; Narberhaus, F. A Tricistronic Heat Shock Operon is Important for Stress Tolerance of Pseudomonas putida and Conserved in Many Environmental Bacteria. Environ. Microbiol. 2014, 16, 1835–1853. DOI: 10.1111/1462-2920.12432.
  • Parvatiyar, K.; Alsabbagh, E. M.; Ochsner, U. A.; Stegemeyer, M. A.; Smulian, A. G.; Hwang, S. H.; Jackson, C. R.; McDermott, T. R.; Hassett, D. J. Global Analysis of Cellular Factors and Responses Involved in Pseudomonas aeruginosa Resistance to Arsenite. J. Bacteriol. 2005, 187, 4853–4864. DOI: 10.1128/JB.187.14.4853-4864.2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.