297
Views
0
CrossRef citations to date
0
Altmetric
Review

Microbial surfactants: characteristics, production and broader application prospects in environment and industry

ORCID Icon & ORCID Icon

References

  • Saha, P.; Rao, K. V. B. Biosurfactants – A Current Perspective on Production and Applications. Nat. Environ. Pollut. Technol. 2017, 16, 181–188.
  • Bezerra, K. G. O.; Rufino, R. D.; Luna, J. M.; Sarubbo, L. A. Saponins and Microbial Biosurfactants: Potential Raw Materials for the Formulation of Cosmetics. Biotechnol. Prog. 2018, 34, 1482–1493. DOI: 10.1002/btpr.2682.
  • Dastgheib, S. M. M.; Amoozegar, M. A.; Elahi, E.; Asad, S.; Banat, I. M. Bioemulsifier Production by a Halothermophilic Bacillus Strain with Potential Applications in Microbially Enhanced Oil Recovery. Biotechnol. Lett. 2008, 30, 263–270. DOI: 10.1007/s10529-007-9530-3.
  • Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of Surfactants for the Remediation of Contaminated Soils: A Review. J. Hazard. Mater. 2015, 285, 419–435. DOI: 10.1016/j.jhazmat.2014.12.009.
  • Souza, E. C.; Penna, T. C. V.; Oliveira, R. P. S. Biosurfactant-Enhanced Hydrocarbon Bioremediation: An Overview. Int. Biodeterior. Biodegrad. 2014, 89, 88–94. DOI: 10.1016/j.ibiod.2014.01.007.
  • Santos, D. K. F.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401–431. DOI: 10.3390/ijms17030401.
  • Gutnick, D. L.; Bach, H. B. In Reference Module in Life Sciences, Roitberg BD, ed. Amsterdam: Elsevier, 2017. DOI: 10.1016/B978-0-12-809633-8.09184-6.ISBN 978-0-12-809633-8.
  • Hesham, A. EL.; Wang, Z.; Zhang, Y.; Zhang, J.; Wenzhou, L.; Yang, M. Isolation and Identification of a Yeast Strain Capable of Degrading Four and Five Ring Aromatic Hydrocarbons. Ann. Microbiol. 2006, 56, 109–112. DOI: 10.1007/BF03174990.
  • Pulate, V. D.; Bhagwat, S.; Prabhune, A. A. Microbial Oxidation of Medium Chain Fatty Alcohol in the Synthesis of Sophorolipids by Candida bombicola and Its Physicochemical Characterization. J. Surfact. Deterg. 2013, 16, 173–181. DOI: 10.1007/s11743-012-1378-4.
  • Mohy Eldin, A.; Kamel, Z.; Hossam, N. Isolation and Genetic Identification of Yeast Producing Biosurfactants, Evaluated by Different Screening Methods. Microchem. J. 2019, 146, 309–314. DOI: 10.1016/j.microc.2019.01.020.
  • Das, P.; Mukherjee, S.; Sen, R. Biosurfactant of Marine Origin Exhibiting Heavy Metal Remediation Properties. Bioresour. Technol. 2009, 100, 4887–4890. DOI: 10.1016/j.biortech.2009.05.028.
  • Ramos, S. V.; Portillo-Ruiz, M. C.; Ballinas-Casarrubias, M. D. L.; Torres-Munoz, J. V.; Rivera-Chavira, B. E.; Nevarez-Moorillon, G. V. Selection of Biosurfactant/Bioemulsifier-Producing Bacteria from Hydrocarbon-Contaminated Soil. Braz. J. Microbiol. 2010, 41, 668–675. DOI: 10.1590/S1517-83822010000300017.
  • Hamme, J. D. V.; Singh, A.; Ward, O. P. Physiological Aspects. Part 1 in a Series of Papers Devoted to Surfactants in Microbiology and Biotechnology. Biotechnol. Adv. 2006, 24, 604–620. DOI: 10.1016/j.biotechadv.2006.08.001.
  • Cooper, D. G.; Paddock, D. A. Production of a Biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 1984, 47, 173–176. DOI: 10.1128/aem.47.1.173-176.
  • Desai, J. D.; Banat, I. M. Microbial Production of Surfactants and Their Commercial Potential. Microbiol. Mol. Biol. Rev. 1997, 61, 47–64. DOI: 10.1128/mmbr.61.1.47-64.1997.
  • Hewald, S.; Josephs, K.; Bölker, M. Genetic Analysis of Biosurfactant Production in Ustilago maydis. Appl. Environ. Microbiol. 2005, 71, 3033–3040. DOI: 10.1128/AEM.71.6.3033-3040.2005.
  • Kim, H. S.; Jeon, J. W.; Kim, B. H.; Ahn, C. Y.; Oh, H. M.; Yoon, B. D. Extracellular Production of a Glycolipid Biosurfactant, Mannosylerythritol Lipid, by Candida sp. SY16 Using Fed-Batch Fermentation. Appl. Microbiol. Biotechnol. 2006, 70, 391–396. DOI: 10.1007/s00253-005-0092-9.
  • Sarubbo, L. A.; Luna, J. M.; Campos-Takaki, G. M. Production and Stability Studies of the Bioemulsifier Obtained from a New Strain of Candida glabrata UCP 1002. Electron. J. Biotechnol. 2006, 9, 400–406. DOI: 10.2225/vol9-issue4-fulltext-6.
  • Sobrinho, H. B. S.; Luna, J. M.; Rufino, R. D.; Porto, A. L. F.; Sarubbo, L. A. Assessment of Toxicity of a Biosurfactant from Candida sphaerica UCP 0995 Cultivated with Industrial Residues in a Bioreactor. Electron. J. Biotechnol. 2013, 16, 1–12. DOI: 10.2225/vol16-issue4-fulltext-4.
  • Jimoh, A. A.; Lin, J. Biosurfactant: A New Frontier for Greener Technology and Environmental Sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. DOI: 10.1016/j.ecoenv.2019.109607.
  • Amézcua-Vega, C.; Poggi-Varaldo, H. M.; Esparza-García, F.; Ríos-Leal, E. Rodríguez-Vázquez, R. Effect of Culture Conditions on Fatty Acids Composition of a Biosurfactant Produced by Candida ingens and Changes of Surface Tension of Culture Media. Bioresour. Technol. 2007, 98, 237–240. DOI: 10.1016/j.biortech.2005.11.025.
  • Kurtzman, C. P.; Price, N. P. J.; Ray, K. J.; Kuo, T.-M. Production of Sophorolipid Biosurfactants by Multiple Species of the Starmerella (Candida) bombicola Yeast Clade. FEMS Microbiol. Lett. 2010, 311, 140–146. DOI: 10.1111/j.1574-6968.2010.02082.x.
  • Maddikeri, G. L.; Gogate, P. R.; Pandit, A. B. Improved Synthesis of Sophorolipids from Waste Cooking Oil Using Fed Batch Approach in the Presence of Ultrasound. Chem. Eng. J. 2015, 263, 479–487. DOI: 10.1016/j.cej.2014.11.010.
  • Chandran, P.; Das, N. Characterization of Sophorolipid Biosurfactant Produced by Yeast Species Grown on Diesel Oil. Int. J. Sci. Nat. 2011, 2, 63–71.
  • Chandran, P.; Das, N. Biosurfactant Production and Diesel Oil Degradation by Yeast Species Trichosporon asahii Isolated from Petroleum Hydrocarbon Contaminated Soil. Int. J. Eng. Sci. Technol. 2010, 2, 6942–6953.
  • Bhatia, V.; Saharan, B. S. Isolation and Characterization of Glycolipid Biosurfactant Produced by Saccharomyces cerevisiae LF14 Isolated from Leather Factory. IOSI J. Microbiol. Biotechnol. Food Sci. 2015, 1, 22–27.
  • Monteiro, A. S.; Coutinho, J. O. P. A.; Ary, C.; Rosa, C. A.; Siqueira, E. P.; Santos, V. L. Characterization of New Biosurfactant Produced by Trichosporon montevideense CLOA 72 Isolated from Dairy Industry Effluents. J. Basic Microbiol. 2009, 49, 553–563. DOI: 10.1002/jobm.200900089.
  • Amaral, P. F. F.; Silva, J. M.; Lehocky, M.; Barros-Timmons, A. M. V.; Coelho, M. A. Z.; Marrucho, I. M.; Coutinho, J. A. P. Production and Characterization of a Bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. DOI: 10.1016/j.procbio.2006.03.029.
  • Rufino, R. D.; Luna, J. M.; Campos-Takaki, G. M.; Sarubbo, L. A. Characterization and Properties of the Biosurfactant Produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38. DOI: 10.1016/j.ejbt.2013.12.006.
  • Sen, S.; Borah, S. N.; Bora, A.; Deka, S. Production, Characterization, and Antifungal Activity of a Biosurfactant Produced by Rhodotorula babjevae YS3. Microb. Cell Fact. 2017, 16, 1–14. DOI: 10.1186/s12934-017-0711-z.
  • Mohy Eldin, A.; Kamel, Z.; Hossam, N. Purification and Identification of Surface Active Amphiphilic Candidates Produced by Geotrichum candidum MK880487 Possessing Antifungal Property. J. Disp. Sci. Technol. 2021, 42, 1082–1098. DOI: 10.1080/01932691.2020.1813157.
  • Bharali, P.; Konwar, B. K. Production and Physico-Chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge. Appl. Biochem. Biotechnol. 2011, 164, 1444–1460. DOI: 10.1007/s12010-011-9225-z.
  • Cappello, S.; Genovese, M.; Torre, C. D.; Crisari, A.; Hassanshahian, M.; Santisi, S.; Calogero, R.; Yakimov, M. M. Effect of Bioemulsificant Exopolysaccharide (EPS2003) on Microbial Community Dynamics during Assays of Oil Spill Bioremediation: A Microcosm Study. Mar. Pollut. Bull. 2012, 64, 2820–2828. DOI: 10.1016/j.marpolbul.2012.07.046.
  • Kitamoto, D.; Isoda, H.; Nakahara, T. Functions and Potential Applications of Glycolipid Biosurfactants from Energy-Saving Materials to Gene Delivery Carriers. J. Biosci. Bioeng. 2002, 94, 187–201. DOI: 10.1263/jbb.94.187.
  • Arutchelvi, J. I.; Bhaduri, S.; Uppara, P. V.; Doble, M. Mannosylerythritol Lipids: A Review. J. Ind. Microbiol. Biotechnol. 2008, 35, 1559–1570. DOI: 10.1007/s10295-008-0460-4.
  • Paulino, B. N.; Pessôa, M. G.; Mano, M. C. R.; Molina, G.; Neri-Numa, I. A.; Pastore, G. M. Current Status in Biotechnological Production and Applications of Glycolipid Biosurfactants. Appl. Microbiol. Biotechnol. 2016, 100, 10265–10293. DOI: 10.1007/s00253-016-7980-z.
  • Mnif, I.; Ghribi, D. Glycolipid Biosurfactants: Main Properties and Potential Applications in Agriculture and Food Industry. J. Sci. Food Agric. 2016, 96, 4310–4320. DOI: 10.1002/jsfa.7759.
  • Rufino, R. D.; Sarubbo, L. A.; Barros-Neto, B.; Campos-Takaki, G. M. Experimental Design for the Production of Tensio-Active Agent by Candida lipolytica. J. Ind. Microbiol. Biotechnol. 2008, 35, 907–914. DOI: 10.1007/s10295-008-0364-3.
  • Batista, R. M.; Rufino, R. D.; Luna, J. M.; Souza, J. E. G.; Sarubbo, L. A. Effect of Medium Components on the Production of a Biosurfactant from Candida tropicalis Applied to the Removal of Hydrophobic Contaminants in Soil. Water Environ. Res. 2010, 82, 418–425. DOI: 10.2175/106143009x12487095237279.
  • Luna, J. M.; Rufino, R. D.; Albuquerque, C. D.; Sarubbo, L. A.; Campos-Takaki, G. M. Economic Optimized Medium for Tensio-Active Agent Production by Candida sphaerica UCP0995 and Application in the Removal of Hydrophobic Contaminant from Sand. Int. J. Mol. Sci. 2011, 12, 2463–2476. DOI: 10.3390/ijms12042463.
  • Rahman, P. K. S. M.; Gakpe, E. Production, Characterisation and Applications of biosurfactants-Review. Biotechnol. 2008, 7, 360–370. DOI: 10.3923/biotech.2008.360.370.
  • Fukuoka, T.; Morita, T.; Konishi, M.; Imura, T.; Kitamoto, D. characterization of New Types of Mannosylerythritol Lipids as Biosurfactants Produced from Soybean Oil by a Basidiomycetous Yeast, Pseudozyma shanxiensis. J. Oleo Sci. 2007, 56, 435–442. DOI: 10.5650/jos.56.435.
  • Morita, T.; Ogura, Y.; Takashima, M.; Hirose, N.; Fukuoka, T.; Imura, T.; Kondo, Y.; Kitamoto, D. Isolation of Pseudozyma churashimaensis sp. nov., a Novel Ustilaginomycetous Yeast Species as a Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids. J. Biosci. Bioeng. 2011, 112, 137–144. DOI: 10.1016/j.jbiosc.2011.04.008.
  • Onghena, M.; Geens, T.; Goossens, E.; Wijnants, M.; Pico, Y.; Neels, H.; Covaci, A.; Lemiere, F. Analytical Characterization of Mannosylerythritol Lipid Biosurfactants Produced by Biosynthesis Based on Feedstock Sources from the Agrofood Industry. Anal. Bioanal. Chem. 2011, 400, 1263–1275. DOI: 10.1007/s00216-011-4741-9.
  • Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Kitamoto, H. K.; Kitamoto, D. Characterization of the Genus Pseudozyma by the Formation of Glycolipid Biosurfactants, Mannosylerythritol Lipids. FEMS Yeast Res. 2007, 7, 286–292. DOI: 10.1111/j.1567-1364.2006.00154.x.
  • Sari, M.; Kusharyoto, W.; Artika, I. M. Screening for Biosurfactant-Producing Yeast: Confirmation of Biosurfactant Production. Biotechnol. 2014, 13, 106–111. DOI: 10.3923/biotech.2014.106.111.
  • Monteiro, A. S.; Bonfim, M. R. Q.; Domingues, V. S.; Corrêa, A.; Siqueira, E. P.; Zani, C. L.; Santos, V. L. Identification and Characterization of Bioemulsifier-Producing Yeasts Isolated from Effluents of a Dairy Industry. Bioresour. Technol. 2010, 101, 5186–5193. DOI: 10.1016/j.biortech.2010.02.041.
  • Sarubbo, L. A.; Brasileiro, P. P. F.; Silveira, G. N. M.; Luna, J. M.; Rufino, R. D.; Santos, V. A. Application of a Low Cost Biosurfactant in the Removal of Heavy Metals in Soil. Chem. Eng. Trans. 2018, 64, 433–438. DOI: 10.3303/CET1864073.
  • Luna, J. M.; Rufino, R. D.; Sarubbo, L. A.; Campos-Takaki, G. M. Characterisation, Surface Properties and Biological Activity of a Biosurfactant Produced from Industrial Waste by Candida sphaerica UCP0995 for Application in the Petroleum Industry. Colloids Surf. B Biointerfaces 2013, 102, 202–209. DOI: 10.1016/j.colsurfb.2012.08.008.
  • Priji, P.; Unni, K. N.; Sajith, S.; Benjamin, S. Candida tropicalis BPU1, a Novel Isolate from the Rumen of the Malabari Goat, is a Dual Producer of Biosurfactant and Polyhydroxybutyrate. Yeast 2013, 30, 103–110. DOI: 10.1002/yea.2944.
  • Nerurkar, A. S.; Hingurao, K. S.; Suthar, H. G. Bioemulsifiers from Marine Microorganisms. J. Scientific Ind. Res. 2009, 68, 273–277.
  • Bhatia, V.; Saharan, B. S. Isolation and Partial Structural & Functional Characterization of Glycolipid Biosurfactant Producing Pichia sorbitophila WG1 from Rotten Grapes. J. Chem. Pharm. Res. 2016, 8, 357–367.
  • Guerfali, M.; Ayadi, I.; Mohamed, N.; Ayadi, W.; Belghith, H.; Bronze, M. R.; Ribeiro, M. H.; Gargouri, A. Triacylglycerols Accumulation and Glycolipids Secretion by the Oleaginous Yeast Rhodotorula babjevae Y-SL7: Structural Identification and Biotechnological Applications. Bioresour. Technol. 2019, 273, 326–334. DOI: 10.1016/j.biortech.2018.11.036.
  • Kulakovskaya, T. V.; Shashkov, A. S.; Kulakovskaya, E. V.; Golubev, W. I. Characterization of an Antifungal Glycolipid Secreted by the Yeast Sympodiomycopsis paphiopedili. FEMS Yeast Res. 2004, 5, 247–252. DOI: 10.1016/j.femsyr.2004.07.008.
  • Weber, L.; Döge, C.; Haufe, G.; Hommel, R.; Kleber, H. P. Oxygenation of Hexadecane in the Biosynthesis of Cyclic Glycolipids in Torulopsis apicola. Biocatal. Biotransform. 1992, 5, 267–272. DOI: 10.3109/10242429209014872.
  • Monteiro, A. S.; Domingues, V. S.; Souza, M. V. D.; Lula, I.; Gonçalves, D. B.; Siqueira, E. P.; Santos, V. L. Bioconversion of Biodiesel Refinery Waste in the Bioemulsifier by Trichosporon mycotoxinivorans CLA2. Biotechnol. Biofuels 2012, 5, 29. DOI: 10.1186/1754-6834-5-29.
  • Souza, K. S. T.; Gudiña, E. J.; Schwan, R. F.; Rodrigues, L. R.; Dias, D. R.; Teixeira, J. A. Improvement of Biosurfactant Production by Wickerhamomyces anomalus CCMA 0358 and Its Potential Application in Bioremediation. J. Hazard. Mater. 2018, 346, 152–158. DOI: 10.1016/j.jhazmat.2017.12.021.
  • Balan, S. S.; Kumar, C. G.; Jayalakshmi, S. Physicochemical, Structural and Biological Evaluation of Cybersan (Trigalactomargarate), a New Glycolipid Biosurfactant Produced by a Marine Yeast, Cyberlindnera saturnus Strain SBPN-27. Process Biochem. 2019, 80, 171–180. DOI: 10.1016/j.procbio.2019.02.005.
  • Mimee, B.; Labbé, C.; Pelletier, R.; Bélanger, R. R. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa. Antimicrob. Agents Chemother. 2005, 49, 1597–1599. DOI: 10.1128/AAC.49.4.1597-1599.2005.
  • Yang, X.; Zhu, L.; Xue, C.; Chen, Y.; Qu, L.; Lu, W. Recovery of Purified Lactonic Sophorolipids by Spontaneous Crystallization during the Fermentation of Sugarcane Molasses with Candida albicans O-13-1. Enzyme Microb. Technol. 2012, 51, 348–353. DOI: 10.1016/j.enzmictec.2012.08.002.
  • Mulligan, C. N. Environmental Applications for Biosurfactants. Environ. Pollut. 2005, 133, 183–198. DOI: 10.1016/j.envpol.2004.06.009.
  • Konishi, M.; Fukuoka, T.; Morita, T.; Imura, T.; Kitamoto, D. Production of New Types of Sophorolipids by Candida batistae. J. Oleo Sci. 2008, 57, 359–369. DOI: 10.5650/jos.57.359.
  • Elshafie, A. E.; Joshi, S. J.; Al-Wahaibi, Y. M.; Al-Bemani, A. S.; Al-Bahry, S. N.; Al-Maqbali, D.; Banat, I. M. Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Microbial Enhanced Oil Recovery. Front. Microbiol. 2015, 6, 1324. DOI: 10.3389/fmicb.2015.01324.
  • Konishi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Uemura, S.; Iwabuchi, H.; Kitamoto, D. Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by Candida floricola. J. Oleo Sci. 2018, 67, 489–496. DOI: 10.5650/jos.ess17219.
  • Kurtzman, C. P. Candida Kuoi sp. nov., an Anamorphic Species of the Starmerella Yeast Clade That Synthesizes Sophorolipids. Int. J. Syst. Evol. Microbiol. 2012, 62, 2307–2311. DOI: 10.1099/ijs.0.039479-0.
  • Felse, P. A.; Shah, V.; Chan, J.; Rao, K. J.; Gross, R. A. Sophorolipid Biosynthesis by Candida bombicola from Industrial Fatty Acid Residues. Enzyme Microb. Technol. 2007, 40, 316–323. DOI: 10.1016/j.enzmictec.2006.04.013.
  • Archana, K.; Reddy, K. S.; Parameshwar, J.; Bee, H. Isolation and Characterization of Sophorolipid Producing Yeast from Fruit Waste for Application as Antibacterial Agent. Environ. Sustain. 2019, 2, 107–115. DOI: 10.1007/s42398-019-00069-x.
  • Daniel, H. J.; Reuss, M.; Syldatk, C. Production of Sophorolipids in High Concentration from Deproteinized Whey and Rapeseed Oil in a Two Stage Fed Batch Process Using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett. 1998, 20, 1153–1156. DOI: 10.1023/A:1005332605003.
  • Ma, X.; Li, H.; Wang, D.; Song, X. Sophorolipid Production from Delignined Corncob Residue by Wickerhamiella domercqiae Var. sophorolipid CGMCC 1576 and Cryptococcus curvatus ATCC 96219. Appl. Microbiol. Biotechnol. 2014, 98, 475–483. DOI: 10.1007/s00253-013-4856-3.
  • Marcelino, P. R. F.; Peres, G. F. D.; Terán-Hilares, R.; Pagnocca, F. C.; Rosa, C. A.; Lacerda, T. M.; Santos, J. C.; Silva, S. S. Biosurfactants Production by Yeasts Using Sugarcane Bagasse Hemicellulosic Hydrolysate as New Sustainable Alternative for Lignocellulosic Biorefineries. Ind. Crops Prod. 2019, 129, 212–223. DOI: 10.1016/j.indcrop.2018.12.001.
  • Poomtien, J.; Thaniyavarn, J.; Pinphanichakarn, P.; Jindamorakot, S.; Morikawa, M. Production and Characterization of a Biosurfactant from Cyberlindnera samutprakarnensis JP52T. Biosci. Biotechnol. Biochem. 2013, 77, 2362–2370. DOI: 10.1271/bbb.130434.
  • Romero, M. C.; Urrutia, M. I.; Reinoso, E. H.; Kiernan, A. M. Effects of the Sorption/Desorption Process on the Fluoranthene Degradation by Wild Strains of Hansenula angusta and Rhodotorula minuta. Int. Res. J. Microbiol. 2011, 2, 230–236.
  • Mousavi, F.; Beheshti-Maal, K.; Massah, A. Production of Sophorolipid from an Identified Current Yeast, Lachancea thermotolerans BBMCZ7FA20, Isolated from Honey Bee. Curr. Microbiol. 2015, 71, 303–310. DOI: 10.1007/s00284-015-0841-7.
  • Kumari, A.; Kumari, S.; Prasad, G. S.; Pinnaka, A. K. Production of Sophorolipid Biosurfactant by Insect Derived Novel Yeast Metschnikowia churdharensis f.a., sp. nov., and Its Antifungal Activity against Plant and Human Pathogens. Front. Microbiol. 2021, 12, 678668. DOI: 10.3389/fmicb.2021.678668.
  • Camargo, F. P.; Menezes, A. J.; Tonello, P. S.; Santos, A. C. A.; Duarte, I. C. S. Characterization of Biosurfactant from Yeast Using Residual Soybean Oil under Acidic Conditions and Their Use in Metal Removal Processes. FEMS Microbiol. Lett. 2018, 365, fny098. DOI: 10.1093/femsle/fny098.
  • Thaniyavarn, J.; Chianguthai, T.; Sangvanich, P.; Roongsawang, N.; Washio, K.; Morikawa, M.; Thaniyavarn, S. Production of Sophorolipid Biosurfactant by Pichia anomala. Biosci. Biotechnol. Biochem. 2008, 72, 2061–2068. DOI: 10.1271/bbb.80166.
  • Solaiman, D. K.; Ashby, R. D.; Crocker, N. V. High-Titer Production and Strong Antimicrobial Activity of Sophorolipids from Rhodotorula bogoriensis. Biotechnol. Prog. 2015, 31, 867–874. DOI: 10.1002/btpr.2101.
  • Bhangale, A. P.; Wadekar, S. D.; Kale, S. B.; Pratap, A. P. Sophorolipids Synthesized Using Non-Traditional Oils with Glycerol and Studies on Their Surfactant Properties with Synthetic Surfactant. Tenside Surfact. Deterg. 2014, 51, 387–396. DOI: 10.3139/113.110320.
  • Vidhya, V.; Vidhya, A.; Gowri, B. V.; Arunadevi, S. Utilization of Synthetic Dairy Waste Water and Waste Oil for the Production of Sophorolipid from Starmerella bombicola MTCC 1910 and Testing Its Antimicrobial Activity. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 555–565.
  • Imura, T.; Kawamura, D.; Morita, T.; Sato, S.; Fukuoka, T.; Yamagata, Y.; Takahashi, M.; Wada, K.; Kitamoto, D. Production of Sophorolipids from Non-Edible Jatropha Oil by Stamerella bombicola NBRC 10243 and Evaluation of Their Interfacial Properties. J. Oleo Sci. 2013, 62, 857–864. DOI: 10.5650/jos.62.857.
  • Parekh, V. J.; Patravale, V. B.; Pandit, A. B. Mango Kernel Fat: A Novel Lipid Source for the Fermentative Production of Sophorolipid Biosurfactant Using Starmerella bombicola NRRL-Y 17069. Ann. Biol. Res. 2012, 3, 1798–1803.
  • Kim, S. Y.; Oh, D. K.; Lee, K. H.; Kim, J. H. Effect of Soybean Oil and Glucose on Sophorose Lipid Fermentation by Torulopsis bombicola in Continuous Culture. Appl. Microbiol. Biotechnol. 1997, 48, 23–26. DOI: 10.1007/s002530051009.
  • Ma, X.; Li, H.; Song, X. Surface and Biological Activity of Sophorolipid Molecules Produced by Wickerhamiella domercqiae Var. sophorolipid CGMCC 1576. J. Colloid Interface Sci. 2012, 376, 165–172. DOI: 10.1016/j.jcis.2012.03.007.
  • Joshi-Navare, K.; Singh, P. K.; Prabhune, A. A. New Yeast Isolate Pichia caribbica Synthesizes Xylolipid Biosurfactant with Enhanced Functionality. Eur. J. Lipid Sci. Technol. 2014, 116, 1070–1079. DOI: 10.1002/ejlt.201300363.
  • Morita, T.; Ishibashi, Y.; Fukuoka, T.; Imura, T.; Sakai, H.; Abe, M.; Kitamoto, D. Production of Glycolipid Biosurfactants, Cellobiose Lipids, by Cryptococcus humicola JCM 1461 and Their Interfacial Properties. Biosci. Biotechnol. Biochem. 2011, 75, 1597–1599. DOI: 10.1271/bbb.110036.
  • Kulakovskaya, T. V.; Golubev, W. I.; Tomashevskaya, M. A.; Kulakovskaya, E. V.; Shashkov, A. S.; Grachev, A. A.; Chizhov, A. S.; Nifantiev, N. E. Production of Antifungal Cellobiose Lipids by Trichosporon porosum. Mycopathologia 2010, 169, 117–123. DOI: 10.1007/s11046-009-9236-2.
  • Thanomsub, B.; Watcharachaipong, T.; Chotelersak, K.; Arunrattiyakorn, P.; Nitoda, T.; Kanzaki, H. Monoacylglycerols: Glycolipid Biosurfactants Produced by a Thermotolerant Yeast, Candida ishiwadae. J. Appl. Microbiol. 2004, 96, 588–592. DOI: 10.1111/j.1365-2672.2004.02202.x.
  • Kakugawa, K.; Tamai, M.; Imamura, K.; Miyamoto, K.; Miyoshi, S.; Morinaga, Y.; Suzuki, O.; Miyakawa, T. Isolation of Yeast Kurtzmanomyces sp. I-11, Novel Producer of Mannosylerythritol Lipid. Biosci. Biotechnol. Biochem. 2002, 66, 188–191. DOI: 10.1271/bbb.66.188.
  • Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Production of Glycolipid Biosurfactants by Basidiomycetous Yeasts. Biotechnol. Appl. Biochem. 2009, 53, 39–49. DOI: 10.1042/BA20090033.
  • Yamamoto, S.; Fukuoka, T.; Imura, T.; Morita, T.; Yanagidani, S.; Kitamoto, D.; Kitagawa, M. Production of a Novel Mannosylerythritol Lipid Containing a Hydroxy Fatty Acid from Castor Oil by Pseudozyma tsukubaensis. J. Oleo Sci. 2013, 62, 381–389. DOI: 10.5650/jos.62.381.
  • Morita, T.; Fukuoka, T.; Konishi, M.; Imura, T.; Yamamoto, S.; Kitagawa, M.; Sogabe, A.; Kitamoto, D. Production of a Novel Glycolipid Biosurfactant, Mannosylmannitol Lipid, by Pseudozyma parantarctica and Its Interfacial Properties. Appl. Microbiol. Biotechnol. 2009, 83, 1017–1025. DOI: 10.1007/s00253-009-1945-4.
  • Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Formation of the Two Novel Glycolipid Biosurfactants, Mannosylribitol Lipid and Mannosylarabitol Lipid, by Pseudozyma parantarctica JCM 11752T. Appl. Microbiol. Biotechnol. 2012, 96, 931–938. DOI: 10.1007/s00253-012-4230-x.
  • Deleu, M.; Paquot, M. From Renewable Vegetables Resources to Microorganisms: New Trends in Surfactants. C. R. Chim. 2004, 7, 641–646. DOI: 10.1016/j.crci.2004.04.002.
  • Kawahara, H.; Hirai, A.; Minabe, T.; Obata, H. Stabilization of Astaxanthin by a Novel Biosurfactant Produced by Rhodotorula mucilaginosa KUGPP-1. Biocontrol Sci. 2013, 18, 21–28. DOI: 10.4265/bio.18.21.
  • Derguine-Mecheri, L.; Kebbouche-Gana, S.; Djenane, D. Biosurfactant Production from Newly Isolated Rhodotorula sp.YBR and Its Great Potential in Enhanced Removal of Hydrocarbons from Contaminated Soils. World J. Microbiol. Biotechnol. 2021, 37, 18. DOI: 10.1007/s11274-020-02983-3.
  • Lukondeh, T.; Ashbolt, N. J.; Rogers, P. L. Evaluation of Kluyveromyces marxianus FII 510700 Grown on a Lactose-Based Medium as a Source of a Natural Bioemulsifier. J. Ind. Microbiol. Biotechnol. 2003, 30, 715–720. DOI: 10.1007/s10295-003-0105-6.
  • Walencka, E.; Wieckowska-Szakiel, M.; Rozalska, S.; Sadowska, B.; Rozalska, B. A Surface-Active Agent from Saccharomyces cerevisiae Influences Staphylococcal Adhesion and Biofilm Development. Z. Naturforsch. C 2007, 62, 433–438. DOI: 10.1515/znc-2007-5-618.
  • Kim, J. S.; Lee, I. K.; Yun, B. S. A Novel Biosurfactant Produced by Aureobasidium pullulans L3-GPY from a Tiger Lily Wild Flower, Lilium lancifolium Thunb. PLOS One 2015, 10, e0122917. DOI: 10.1371/journal.pone.0122917.
  • Meneses, D. P.; Gudiña, E. J.; Fernandes, F.; Gonçalves, L. R. B.; Rodrigues, L. R.; Rodrigues, S. The Yeast-like Fungus Aureobasidium thailandense LB01 Produces a New Biosurfactant Using Olive Oil Mill Wastewater as an Inducer. Microbiol. Res. 2017, 204, 40–47. DOI: 10.1016/j.micres.2017.07.004.
  • Katemai, W.; Maneerat, S.; Kawai, F.; Kanzaki, H.; Nitoda, T.; H-Kittikun, A. Purification and Characterization of a Biosurfactant Produced by Issatchenkia orientalis SR4. J. Gen. Appl. Microbiol. 2008, 54, 79–82. DOI: 10.2323/jgam.54.79.
  • Verma, A.; Gupta, N.; Verma, S. K.; Das, M. D. Multifactorial Approach to Biosurfactant Production by Adaptive Strain Candida tropicalis MTCC 230 in the Presence of Hydrocarbons. J. Surfact. Deterg. 2015, 18, 145–153. DOI: 10.1007/s11743-014-1608-z.
  • Sarubbo, L. A.; Farias, C. B. B.; Campos-Takaki, G. M. Co-Utilization of Canola Oil and Glucose on the Production of a Surfactant by Candida lipolytica. Curr. Microbiol. 2007, 54, 68–73. DOI: 10.1007/s00284-006-0412-z.
  • Campos, J. M.; Stamford, T. L. M.; Sarubbo, L. A. Characterization and Application of a Biosurfactant Isolated from Candida utilis in Salad Dressings. Biodegrad. 2019, 30, 313–324. DOI: 10.1007/s10532-019-09877-8.
  • Garg, M.; Priyanka; Chatterjee, M. Isolation, Characterization and Antibacterial Effect of Biosurfactant from Candida parapsilosis. Biotechnol. Rep. 2018, 18, e00251. DOI: 10.1016/j.btre.2018.e00251.
  • Kaur, K.; Sangwan, S.; Kaur, H. Biosurfactant Production by Yeasts Isolated from Hydrocarbon Polluted Environments. Environ. Monit. Assess. 2017, 189, 603. DOI: 10.1007/s10661-017-6311-x.
  • Moussa, T. A. A.; Ahmed, G. M.; Abdel-Hamid, S. M. S. Optimization of Cultural Conditions for Biosurfactant Production from Nocardia amarae. J. Appl. Sci. Res. 2006, 2, 844–850.
  • Bueno, J. L.; Santos, P. A. D.; Silva, R. R.; Moguel, I. S.; Pessoa Jr, A.; Vianna, M. V.; Pagnocca, F. C.; Sette, L. D.; Gurpilhares, D. B. Biosurfactant Production by Yeasts from Different Types of Soil of the South Shetland Islands (Maritime Antarctica). J. Appl. Microbiol. 2019, 126, 1402–1413., DOI: 10.1111/jam.14206.
  • Jimoh, S. O.; Adefioye, N. A.; Bakare, R. I.; Ibrahim, R. A.; Ashorob, A. A. Physicochemical Screening of Candida lusitaniae P1 during Synthesis of Biosurfactant from Coconut Shell. Malays. J. Microbiol. 2015, 11, 306–312. DOI: 10.21161/mjm.67814.
  • Shepherd, R.; Rockey, J.; Sutherland, I. W.; Roller, S. Novel Bioemulsifiers from Microorganisms for Use in Foods. J. Biotechnol. 1995, 40, 207–217. DOI: 10.1016/0168-1656(95)00053-s.
  • Ribeiro, B. G.; Guerra, J. M. C.; Sarubbo, L. A. Production of a Biosurfactant from S. cerevisiae and Its Application in Salad Dressing. Biocatal. Agric. Biotechnol. 2022, 42, 102358. DOI: 10.1016/j.bcab.2022.102358.
  • Batrakov, S. G.; Konova, I. V.; Sheichenko, V. I.; Galanina, L. A. Glycolipids of the Filamentous Fungus Absidia corymbifera F-295. Chem. Phys. Lipids 2003, 123, 157–164. DOI: 10.1016/S0009-3084(02)00166-4.
  • Zadeh, P. H.; Moghimi, H.; Hamedi, J. Biosurfactant Production by Mucor circinelloides: Environmental Applications and Surface-Active Properties. Eng. Life Sci. 2018, 18, 317–325. DOI: 10.1002/elsc.201700149.
  • Liu, Y.; Koh, C. M. J.; Ji, L. Bioconversion of Crude Glycerol to Glycolipids in Ustilago maydis. Bioresour. Technol. 2011, 102, 3927–3933. DOI: 10.1016/j.biortech.2010.11.115.
  • Camargo de Morais, M. M.; Ramos, S. A. F.; Pimentel, M. C. B.; Melo, E. H. M.; Morais Jr, M. A.; Kennedy, J. F.; Filho, J. L. L. Lipopolysaccharide Extracellular Emulsifier Produced by Penicillium citrinum. J. Biol. Sci. 2006, 6, 511–515. DOI: 10.3923/jbs.2006.511.515.
  • Hewald, S.; Linne, U.; Schere, M.; Marahiel, M. A.; Kamper, J.; Bolker, M. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis. Appl. Environ. Microbiol. 2006, 72, 5469–5477. DOI: 10.1128/AEM.00506-06.
  • Morita, T.; Ishibashi, Y.; Hirose, N.; Wada, K.; Takahashi, M.; Fukuoka, T.; Imura, T.; Sakai, H.; Abe, M.; Kitamoto, D. Production and Characterization of a Glycolipid Biosurfactant, Mannosylerythritol Lipid B, from Sugarcane Juice by Ustilago scitaminea NBRC 32730. Biosci. Biotechnol. Biochem. 2011, 75, 1371–1376. DOI: 10.1271/bbb.110221.
  • Ishaq, U.; Akram, M. S.; Iqbal, Z.; Rafiq, M.; Akrem, A.; Nadeem, M.; Shafi, F.; Shafiq, Z.; Mahmood, S.; Baig, M. A. Production and Characterization of Novel Self-Assembling Biosurfactants from Aspergillus flavus. J. Appl. Microbiol. 2015, 119, 1035–1045. DOI: 10.1111/jam.12929.
  • Adekunle, A. T.; Ester, B. B.; Peter, A. O.; Bankole, O. S.; Joshua, I. U. J.; Alfa, S. Characterization of New Glycosophorolipid-Surfactant Produced by Aspergillus niger and Aspergillus flavus. Eur. J. Biotechnol. Biosci. 2015, 3, 34–39.
  • Reis, C. B. L.; Morandini, L. M. B.; Bevilacqua, C. B.; Bublitz, F.; Ugalde, G.; Mazutti, M. A.; Jacques, R. J. S. First Report of the Production of a Potent Biosurfactant with α,β-Trehalose by Fusarium fujikuroi under Optimized Conditions of Submerged Fermentation. Braz. J. Microbiol. 2018, 49S, 185–192. DOI: 10.1016/j.bjm.2018.04.004.
  • Batrakov, S. G.; Konova, I. V.; Sheichenko, V. I.; Esipov, S. E.; Galanina, L. A. Two Unusual Glycerophospholipids from a Filamentous Fungus, Absidia corymbifera. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2001, 1531, 169–177. DOI: 10.1016/S1388-1981(01)00082-8.
  • Alejandro, C. S.; Humberto, H. S.; Maria, J. F. Production of Glycolipids with Antimicrobial Activity by Ustilago maydis FBD12 in Submerged Culture. Afr. J. Microbiol. Res. 2011, 5, 2512–2523. DOI: 10.5897/AJMR10.814.
  • Pele, M. A.; Ribeaux, D. R.; Vieira, E. R.; Souza, A. F.; Luna, M. A. C.; Rodríguez, D. M.; Andrade, R. F. S.; Alviano, D. S.; Alviano, C. S.; Barreto-Bergter, E.; Santiago, A. L. C. M. A.; Campos-Takaki, G. M. Conversion of Renewable Substrates for Biosurfactant Production by Rhizopus arrhizus UCP 1607 and Enhancing the Removal of Diesel Oil from Marine Soil. Electron. J. Biotechnol. 2019, 38, 40–48. DOI: 10.1016/j.ejbt.2018.12.003.
  • Paraszkiewicz, K.; Kanwal, A.; Długoński, J. Emulsifier Production by Steroid Transforming Filamentous Fungus Curvularia lunata. Growth and Product Characterization. J. Biotechnol. 2002, 92, 287–294. DOI: 10.1016/s0168-1656(01)00376-5.
  • Gautam, G.; Mishra, V.; Verma, P.; Pandey, A. K.; Negi, S. A Cost Effective Strategy for Production of Bio-Surfactant from Locally Isolated Penicillium chrysogenum SNP5 and Its Applications. J. Bioprocess. Biotech. 2014, 4, 1000177. DOI: 10.4172/2155-9821.1000177.
  • Lourenço, L. A.; Magina, M. D. A.; Tavares, L. B. B.; Souza, S. M. A. G. U.; Román, M. G.; Vaz, D. A. Biosurfactant Production by Trametes versicolor Grown on Two-Phase Olive Mill Waste in Solid-State Fermentation. Environ. Technol. 2018, 39, 3066–3076., DOI: 10.1080/09593330.2017.1374471.
  • Moriwaki-Takano, M.; Asada, C.; Nakamura, Y. Production of Spiculisporic Acid by Talaromyces trachyspermus in Fed-Batch Bioreactor Culture. Bioresour. Bioprocess. 2021, 8, 59. DOI: 10.1186/s40643-021-00414-1.
  • Santhappan, R.; Pandian, M. R. Characterization of Novel Biosurfactants Produced by the Strain Fusarium oxysporum. J. Bioremediat. Biodegrad. 2017, 08, 416. DOI: 10.4172/2155-6199.1000416.
  • Silva, N. R. A.; Luna, M. A. C.; Santiago, A. L. C. M. A.; Franco, L. O.; Silva, G. K. B.; Souza, P. M.; Okada, K.; Albuquerque, C. D. C.; Silva, C. A. A.; Campos-Takaki, G. M. Biosurfactant-and-Bioemulsifier Produced by a Promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil. Int. J. Mol. Sci. 2014, 15, 15377–15395. DOI: 10.3390/ijms150915377.
  • Velioglu, Z.; Ürek, R. Ö. Biosurfactant Production by Pleurotus ostreatus in Submerged and Solid-State Fermentation Systems. Turk. J. Biol. 2015, 39, 160–166. DOI: 10.3906/biy-1406-44.
  • Muriel, J. M.; Bruque, J. M.; Olías, J. M.; Jiménez-Sánchez, A. Production of Biosurfactants by Cladosporium resinae. Biotechnol. Lett. 1996, 18, 235–240. DOI: 10.1007/BF00142937.
  • Silva, M. E. T.; Duvoisin Jr, S.; Oliveira, R. L.; Banhos, E. F.; Souza, A. Q. L.; Albuquerque, P. M. Biosurfactant Production of Piper hispidum Endophytic Fungi. J. Appl. Microbiol. 2021, 130, 561–569. DOI: 10.1111/jam.14398.
  • Lins, A. B.; Bione, A. P.; Fonseca, T. C. S.; Silva, T. C.; Silva, P. H.; Morant, K. V.; Andrade, R. F. S.; Campos-Takaki, G. M. Biosurfactant Production by Cunninghamella phaeosphora UCP 1303 Using Controlled Temperature through of Arduino. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2708–2715. DOI: 10.20546/ijcmas.2017.612.314.
  • Souza, P. M.; Freitas-Silva, M.; Lima e Silva, T. A.; Silva, G. K. B.; Lima, M. A. B.; Nascimento, A. E.; Marques, N.; Santos, V. P.; Oliveira, L. T.; Campos-Takaki, G. M. Factorial Design Based Medium Optimization for the Improved Production of Biosurfactant by Mucor polymorphosphorus. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 898–905. DOI: 10.20546/ijcmas.2016.511.103.
  • Camerini, F. V.; Chanin, C. A.; Borba, C. M.; Costa, J. A. V.; Burkert, C. A. V.; Burkert, J. F. M. Biosurfactant Production by Phialemonium sp. using Agroindustrial Wastes: Influence of Culture Conditions. Acta Sci. Biol. Sci. 2019, 41, e43484. DOI: 10.4025/actascibiolsci.v41i1.43484.
  • Velioglu, Z.; Urek, R. O. Optimization of Cultural Conditions for Biosurfactant Production by Pleurotus djamor in Solid State Fermentation. J. Biosci. Bioeng. 2015, 120, 526–531. DOI: 10.1016/j.jbiosc.2015.03.007.
  • Ilori, M. O.; Amobi, C. J.; Odocha, A. C. Factors Affecting Biosurfactant Production by Oil Degrading Aeromonas spp. isolated from a Tropical Environment. Chemosphere 2005, 61, 985–992. DOI: 10.1016/j.chemosphere.2005.03.066.
  • Thavasi, R.; Jayalakshmi, S.; Balasubramanian, T.; Banat, I. M. Production and Characterization of a Glycolipid Biosurfactant from Bacillus megaterium Using Economically Cheaper Sources. World J. Microbiol. Biotechnol. 2008, 24, 917–925. DOI: 10.1007/s11274-007-9609-y.
  • Kiran, G. S.; Sabarathnam, B.; Thajuddin, N.; Selvin, J. Production of Glycolipid Biosurfactant from Sponge-Associated Marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J. Surfact. Deterg. 2014, 17, 531–542. DOI: 10.1007/s11743-014-1564-7.
  • Kiran, G. S.; Sabu, A.; Selvin, J. Synthesis of Silver Nanoparticles by Glycolipid Biosurfactant Produced from Marine Brevibacterium casei MSA19. J. Biotechnol. 2010, 148, 221–225. DOI: 10.1016/j.jbiotec.2010.06.012.
  • Chooklin, C. S.; Petmeaun, S.; Maneerat, S.; Saimmai, A. Isolation and Characterization of a Biosurfactant from Deinococcus caeni PO5 Using Jackfruit Seed Powder as a Substrate. Ann. Microbiol. 2014, 64, 1007–1020. DOI: 10.1007/s13213-013-0738-2.
  • Donio, M. B. S.; Ronica, F. A.; Viji, V. T.; Velmurugan, S.; Jenifer, J. S. C. A.; Michaelbabu, M.; Dhar, P.; Citarasu, T. Halomonas sp. BS4, a Biosurfactant Producing Halophilic Bacterium Isolated from Solar Salt Works in India and Their Biomedical Importance. SpringerPlus 2013, 2, 149. DOI: 10.1186/2193-1801-2-149.
  • Sharma, D.; Saharan, B. S. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 2014, 698713. DOI: 10.1155/2014/698713.
  • Tripathi, V.; Gaur, V. K.; Dhiman, N.; Gautam, K.; Manickam, N. Characterization and Properties of the Biosurfactant Produced by PAH-Degrading Bacteria Isolated from Contaminated Oily Sludge Environment. Environ. Sci. Pollut. Res. 2020, 27, 27268–27278. DOI: 10.1007/s11356-019-05591-3.
  • Kiran, G. S.; Thomas, T. A.; Selvin, J. Production of a New Glycolipid Biosurfactant from Marine Nocardiopsis lucentensis MSA04 in Solid-State Cultivation. Colloids Surf. B Biointerfaces 2010, 78, 8–16. DOI: 10.1016/j.colsurfb.2010.01.028.
  • Noparat, P.; Maneerat, S.; Saimmai, A. Utilization of Palm Oil Decanter Cake as a Novel Substrate for Biosurfactant Production from a New and Promising Strain of Ochrobactrum anthropi 2/3. World J. Microbiol. Biotechnol. 2014, 30, 865–877. DOI: 10.1007/s11274-013-1493-z.
  • Saimmai, A.; Rukadee, O.; Onlamool, T.; Sobhon, V.; Maneerat, S. Isolation and Functional Characterization of a Biosurfactant Produced by a New and Promising Strain of Oleomonas sagaranensis AT18. World J. Microbiol. Biotechnol. 2012, 28, 2973–2986. DOI: 10.1007/s11274-012-1108-0.
  • Gudiña, E. J.; Pereira, J. F. B.; Costa, R.; Evtuguin, D. V.; Coutinho, J. A. P.; Teixeira, J. A.; Rodrigues, L. R. Novel Bioemulsifier Produced by a Paenibacillus Strain Isolated from Crude Oil. Microb. Cell Fact. 2015, 14, 14. DOI: 10.1186/s12934-015-0197-5.
  • Waghmode, S.; Suryavanshi, M.; Dama, L.; Kansara, S.; Ghattargi, V.; Das, P.; Banpurkar, A.; Satpute, S. K. Genomic Insights of Halophilic Planococcus maritimus SAMP MCC 3013 and Detail Investigation of Its Biosurfactant Production. Front. Microbiol. 2019, 10, 235. DOI: 10.3389/fmicb.2019.00235.
  • Ebrahimipour, G.; Gilavand, F.; Karkhane, M.; Kavyanifard, A. A.; Teymouri, M.; Marzban, A. Bioemulsification Activity Assessment of an Indigenous Strain of Halotolerant Planococcus and Partial Characterization of Produced Biosurfactants. Int. J. Environ. Sci. Technol. 2014, 11, 1379–1386. DOI: 10.1007/s13762-014-0548-5.
  • Silva, E. J.; Silva, N. M. P. R.; Rufino, R. D.; Luna, J. M.; Silva, R. O.; Sarubbo, L. A. Characterization of a Biosurfactant Produced by Pseudomonas cepacia CCT6659 in the Presence of Industrial Wastes and Its Application in the Biodegradation of Hydrophobic Compounds in Soil. Colloids Surf. B Biointerfaces 2014, 117, 36–41. DOI: 10.1016/j.colsurfb.2014.02.012.
  • Astuti, D. I.; Purwasena, I. A.; Putri, R. E.; Amaniyah, M.; Sugai, Y. Screening and Characterization of Biosurfactant Produced by Pseudoxanthomonas sp. G3 and Its Applicability for Enhanced Oil Recovery. J. Petrol. Explor. Prod. Technol. 2019, 9, 2279–2289. DOI: 10.1007/s13202-019-0619-8.
  • Ravinder, P.; Manasa, M.; Roopa, D.; Bukhari, N. A.; Hatamleh, A. A.; Khan, M. Y.; Reddy, M. S.; Hameeda, B.; El Enshasy, H. A.; Hanapi, S. Z.; Sayyed, R. Z. Biosurfactant Producing Multifarious Streptomyces puniceus RHPR9 of Coscinium fenestratum Rhizosphere Promotes Plant Growth in Chilli. PLOS One 2022, 17, e0264975. DOI: 10.1371/journal.pone.0264975.
  • Kannan, S.; Krishnamoorthy, G.; Kulanthaiyesu, A.; Marudhamuthu, M. Effect of Biosurfactant Derived from Vibrio natriegens MK3 against Vibrio harveyi Biofilm and Virulence. J. Basic Microbiol. 2019, 59, 936–949. DOI: 10.1002/jobm.201800706.
  • Colin, V. L.; Castro, M. F.; Amoroso, M. J.; Villegas, L. B. Production of Bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and Their Potential Application in Remediation Technologies for Soils Contaminated with Hexavalent Chromium. J. Hazard. Mater. 2013, 261, 577–583. DOI: 10.1016/j.jhazmat.2013.08.005.
  • Hanano, A.; Shaban, M.; Almousally, I. Biochemical, Molecular, and Transcriptional Highlights of the Biosynthesis of an Effective Biosurfactant Produced by Bacillus safensis PHA3, a Petroleum-Dwelling Bacteria. Front. Microbiol. 2017, 8, 77. DOI: 10.3389/fmicb.2017.00077.
  • Hamza, F.; Satpute, S.; Banpurkar, A.; Kumar, A. R.; Zinjarde, S. Biosurfactant from a Marine Bacterium Disrupts Biofilms of Pathogenic Bacteria in a Tropical Aquaculture System. FEMS Microbiol. Ecol. 2017, 93, fix140. DOI: 10.1093/femsec/fix140.
  • Balan, S. S.; Mani, P.; Kumar, C. G.; Jayalakshmi, S. Structural Characterization and Biological Evaluation of Staphylosan (Dimannooleate), a New Glycolipid Surfactant Produced by a Marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb. Technol. 2019, 120, 1–7. DOI: 10.1016/j.enzmictec.2018.09.008.
  • Haloi, S.; Medhi, T. Optimization and Characterization of a Glycolipid Produced by Achromobacter sp. to Use in Petroleum Industries. J. Basic Microbiol. 2019, 59, 238–248., DOI: 10.1002/jobm.201800298.
  • Chebbi, A.; Tazzari, M.; Rizzi, C.; Tovar, F. H. G.; Villa, S.; Sbaffoni, S.; Vaccari, M.; Franzetti, A. Burkholderia thailandensis E264 as a Promising Safe Rhamnolipids’ Producer towards a Sustainable Valorization of Grape Marcs and Olive Mill Pomace. Appl. Microbiol. Biotechnol. 2021, 105, 3825–3842., DOI: 10.1007/s00253-021-11292-0.
  • Arino, S.; Marchal, R.; Vandecasteele, J. P. Production of New Extracellular Glycolipids by a Strain of Cellulomonas cellulans (Oerskovia xanthineolytica) and Their Structural Characterization. Can. J. Microbiol. 1998, 44, 238–243. DOI: 10.1139/w97-156.
  • Ibrahim, H. M. M. Characterization of Biosurfactants Produced by Novel Strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from Used Engine Oil-Contaminated Soil. Egypt. J. Petrol. 2018, 27, 21–29. DOI: 10.1016/j.ejpe.2016.12.005.
  • Gomaa, E. Z.; El-Meihy, R. M. Bacterial Biosurfactant from Citrobacter freundii MG812314.1 as a Bioremoval Tool of Heavy Metals from Wastewater. Bull. Natl. Res. Cent. 2019, 43, 69. DOI: 10.1186/s42269-019-0088-8.
  • Wang, W.; Cai, B.; Shao, Z. Oil Degradation and Biosurfactant Production by the Deep Sea Bacterium Dietzia maris as-13-3. Front. Microbiol. 2014, 5, 711. DOI: 10.3389/fmicb.2014.00711.
  • Arumugam, A.; Shereen, M. F. Bioconversion of Calophyllum Inophyllum Oilcake for Intensification of Rhamnolipid and Polyhydroxyalkanoates co-Production by Enterobacter aerogenes. Bioresour. Technol. 2020, 296, 122321. DOI: 10.1016/j.biortech.2019.122321.
  • Gaur, V. K.; Bajaj, A.; Regar, R. K.; Kamthan, M.; Jha, R. R.; Srivastava, J. K.; Manickam, N. Rhamnolipid from a Lysinibacillus sphaericus Strain IITR51 and Its Potential Application for Dissolution of Hydrophobic Pesticides. Bioresour. Technol. 2019, 272, 19–25. DOI: 10.1016/j.biortech.2018.09.144.
  • Bazsefidpar, S.; Mokhtarani, B.; Panahi, R.; Hajfarajollah, H. Overproduction of Rhamnolipid by Fed-Batch Cultivation of Pseudomonas aeruginosa in a Lab-Scale Fermenter under Tight DO Control. Biodegrad. 2019, 30, 59–69., DOI: 10.1007/s10532-018-09866-3.
  • Oliveira, F. J. S.; Vazquez, L.; Campos, N. P.; Franca, F. P. Production of Rhamnolipids by a Pseudomonas alcaligenes Strain. Process Biochem. 2009, 44, 383–389. DOI: 10.1016/j.procbio.2008.11.014.
  • Das, A. J.; Kumar, R. Utilization of Agro-Industrial Waste for Biosurfactant Production under Submerged Fermentation and Its Application in Oil Recovery from Sand Matrix. Bioresour. Technol. 2018, 260, 233–240. DOI: 10.1016/j.biortech.2018.03.093.
  • Jadhav, M.; Kalme, S.; Tamboli, D.; Govindwar, S. Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and Its Role in the Degradation of Brown 3REL. J. Basic Microbiol. 2011, 51, 385–396. DOI: 10.1002/jobm.201000364.
  • Govindammal, M.; Parthasarathi, R. Biosurfactant Production Using Pineapple Juice as Medium by Pseudomonas fluorescens Isolated from Mangrove Forest Soil. Indian Streams Res. J. 2013, 2, 1–10. DOI: 10.9780/22307850.
  • Shekhar, S.; Sundaramanickam, A.; Saranya, K.; Meena, M.; Kumaresan, S.; Balasubramanian, T. Production and Characterization of Biosurfactant by Marine Bacterium Pseudomonas stutzeri (SSASM1). Int. J. Environ. Sci. Technol. 2019, 16, 4697–4706. DOI: 10.1007/s13762-018-1915-4.
  • Christova, N.; Tuleva, B.; Lalchev, Z.; Jordanova, A.; Jordanov, B. Rhamnolipid Biosurfactants Produced by Renibacterium salmoninarum 27BN during Growth on n-Hexadecane. Z. Naturforsch. C 2004, 59, 70–74. DOI: 10.1515/znc-2004-1-215.
  • Kim, C. H.; Lee, D. W.; Heo, Y. M.; Lee, H.; Yoo, Y.; Kim, G. H.; Kim, J. J. Desorption and Solubilization of Anthracene by a Rhamnolipid Biosurfactant from Rhodococcus fascians. Water Environ. Res. 2019, 91, 739–747. DOI: 10.1002/wer.1103.
  • Nalini, S.; Parthasarathi, R. Production and Characterization of Rhamnolipids Produced by Serratia rubidaea SNAU02 under Solid-State Fermentation and Its Application as Biocontrol Agent. Bioresour. Technol. 2014, 173, 231–238. DOI: 10.1016/j.biortech.2014.09.051.
  • Kalyani, A. L. T.; Sireesha, G. N.; Aditya, A. K. G.; Sankar, G. G.; Prabhakar, T. Production Optimization of Rhamnolipid Biosurfactant by Streptomyces coelicoflavus (NBRC 15399 T) Using Plackett-Burman Design. Eur. J. Biotechnol. Biosci. 2014, 1, 7–13.
  • Lee, M.; Kim, M. K.; Vancanneyt, M.; Swings, J.; Kim, S. H.; Kang, M. S.; Lee, S. T. Tetragenococcus koreensis sp. nov., a Novel Rhamnolipid-Producing Bacterium. Int. J. Syst. Evol. Microbiol. 2005, 55, 1409–1413. DOI: 10.1099/ijs.0.63448-0.
  • Muthusamy, K.; Gopalakrishnan, S.; Ravi, T. K.; Sivachidambaram, P. Biosurfactants: Properties, Commercial Production and Application. Curr. Sci. 2008, 94, 736–747. https://www.jstor.org/stable/24100627.
  • Marqués, A. M.; Pinazo, A.; Farfan, M.; Aranda, F. J.; Teruel, J. A.; Ortiz, A.; Manresa, A.; Espuny, M. J. The Physicochemical Properties and Chemical Composition of Trehalose Lipids Produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lipids 2009, 158, 110–117. DOI: 10.1016/j.chemphyslip.2009.01.001.
  • Wang, Y.; Nie, M.; Diwu, Z.; Lei, Y.; Li, H.; Bai, X. Characterization of Trehalose Lipids Produced by a Unique Environmental Isolate Bacterium Rhodococcus qingshengii Strain FF. J. Appl. Microbiol. 2019, 127, 1442–1453. DOI: 10.1111/jam.14390.
  • Kuyukina, M. S.; Ivshina, I. B.; Korshunova, I. O.; Stukova, G. I.; Krivoruchko, A. V. Diverse Effects of a Biosurfactant from Rhodococcus ruber IEGM 231 on the Adhesion of Resting and Growing Bacteria to Polystyrene. AMB Expr. 2016, 6, 14. DOI: 10.1186/s13568-016-0186-z.
  • Kügler, J. H.; Muhle-Goll, C.; Kühl, B.; Kraft, A.; Heinzler, R.; Kirschhöfer, F.; Henkel, M.; Wray, V.; Luy, B.; Brenner-Weiss, G.; Lang, S.; Syldatk, C.; Hausmann, R. Trehalose Lipid Biosurfactants Produced by the Actinomycetes Tsukamurella spumae and T. pseudospumae. Appl. Microbiol. Biotechnol. 2014, 98, 8905–8915. DOI: 10.1007/s00253-014-5972-4.
  • Luong, T. M.; Ponamoreva, O. N.; Nechaeva, I. A.; Petrikov, K. V.; Delegan, Y. A.; Surin, A. K.; Linklater, D.; Filonov, A. E. Characterization of Biosurfactants Produced by the Oil-Degrading Bacterium Rhodococcus erythropolis S67 at Low Temperature. World J. Microbiol. Biotechnol. 2018, 34, 20. DOI: 10.1007/s11274-017-2401-8.
  • Sharma, D.; Saharan, B. S.; Chauhan, N.; Procha, S.; Lal, S. Isolation and Functional Characterization of Novel Biosurfactant Produced by Enterococcus faecium. SpringerPlus 2015, 4, 4. DOI: 10.1186/2193-1801-4-4.
  • Sharma, D.; Saharan, B. S.; Chauhan, N.; Bansal, A.; Procha, S. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant. Scientific World J. 2014, 2014, 493548. DOI: 10.1155/2014/493548.
  • Saravanakumari, P.; Mani, K. Structural Characterization of a Novel Xylolipid Biosurfactant from Lactococcus lactis and Analysis of Antibacterial Activity against Multi-Drug Resistant Pathogens. Bioresour. Technol. 2010, 101, 8851–8854. DOI: 10.1016/j.biortech.2010.06.104.
  • Bodour, A. A.; Guerrero-Barajas, C.; Jiorle, B. V.; Malcomson, M. E.; Paull, A. K.; Somogyi, A.; Trinh, L. N.; Bates, R. B.; Maier, R. M. Structure and Characterization of Flavolipids, a Novel Class of Biosurfactants Produced by Flavobacterium sp. strain MTN11. Appl. Environ. Microbiol. 2004, 70, 114–120. DOI: 10.1128/AEM.70.1.114-120.2004.
  • Jain, R. M.; Mody, K.; Mishra, A.; Jha, B. Isolation and Structural Characterization of Biosurfactant Produced by an Alkaliphilic Bacterium Cronobacter sakazakii Isolated from Oil Contaminated Wastewater. Carbohydr. Polym. 2012, 87, 2320–2326. DOI: 10.1016/j.carbpol.2011.10.065.
  • Gudiña, E. J.; Fernandes, E. C.; Teixeira, J. A.; Rodrigues, L. R. Antimicrobial and anti-Adhesive Activities of Cell-Bound Biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015, 5, 90960–90968. DOI: 10.1039/C5RA11659G.
  • Thavasi, R.; Jayalakshmi, S.; Balasubramanian, T.; Banat, I. M. Biosurfactant Production by Corynebacterium kutscheri from Waste Motor Lubricant Oil and Peanut Oil Cake. Lett. Appl. Microbiol. 2007, 45, 686–691. DOI: 10.1111/j.1472-765X.2007.02256.x.
  • Vecino, X.; Rodríguez-López, L.; Ferreira, D.; Cruz, J. M.; Moldes, A. B.; Rodrigues, L. R. Bioactivity of Glycolipopeptide Cell-Bound Biosurfactants against Skin Pathogens. Int. J. Biol. Macromol. 2018, 109, 971–979. DOI: 10.1016/j.ijbiomac.2017.11.088.
  • Ghasemi, A.; Moosavi-Nasab, M.; Behzadnia, A.; Rezaei, M. Enhanced Biosurfactant Production with Low-Quality Date Syrup by Lactobacillus rhamnosus Using a Fed-Batch Fermentation. Food Sci. Biotechnol. 2018, 27, 1137–1144. DOI: 10.1007/s10068-018-0366-5.
  • Balan, S. S.; Kumar, C. G.; Jayalakshmi, S. Aneurinifactin, a New Lipopeptide Biosurfactant Produced by a Marine Aneurinibacillus aneurinilyticus SBP-11 Isolated from Gulf of Mannar: Purification, Characterization and Its Biological Evaluation. Microbiol. Res. 2017, 194, 1–9. DOI: 10.1016/j.micres.2016.10.005.
  • Sriram, M. I.; Kalishwaralal, K.; Deepak, V.; Gracerosepat, R.; Srisakthi, K.; Gurunathan, S. Biofilm Inhibition and Antimicrobial Action of Lipopeptide Biosurfactant Produced by Heavy Metal Tolerant Strain Bacillus cereus NK1. Colloids Surf. B Biointerfaces 2011, 85, 174–181. DOI: 10.1016/j.colsurfb.2011.02.026.
  • Pecci, Y.; Rivardo, F.; Martinotti, M. G.; Allegrone, G. LC/ESI-MS/MS Characterisation of Lipopeptide Biosurfactants Produced by the Bacillus licheniformis V9T14 Strain. J. Mass Spectrom. 2010, 45, 772–778. DOI: 10.1002/jms.1767.
  • Chaprão, M. J.; Silva, R. C. F. S.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Sarubbo, L. A. Production of a Biosurfactant from Bacillus methylotrophicus UCP1616 for Use in the Bioremediation of Oil-Contaminated Environments. Ecotoxicol. 2018, 27, 1310–1322. DOI: 10.1007/s10646-018-1982-9.
  • Ghazala, I.; Bouassida, M.; Krichen, F.; Benito, J. M.; Ellouz-Chaabouni, S.; Haddar, A. Anionic Lipopeptides from Bacillus mojavensis I4 as Effective Antihypertensive Agents: Production, Characterization, and Identification. Eng. Life Sci. 2017, 17, 1244–1253. DOI: 10.1002/elsc.201700020.
  • Najafi, A. R.; Rahimpour, M. R.; Jahanmiri, A. H.; Roostaazad, R.; Arabian, D.; Ghobadi, Z. Enhancing Biosurfactant Production from an Indigenous Strain of Bacillus mycoides by Optimizing the Growth Conditions Using a Response Surface Methodology. Chem. Eng. J. 2010, 163, 188–194. DOI: 10.1016/j.cej.2010.06.044.
  • Chittepu, O. R. Isolation and Characterization of Biosurfactant Producing Bacteria from Groundnut Oil Cake Dumping Site for the Control of Foodborne Pathogens. Grain Oil Sci. Technol. 2019, 2, 15–20. DOI: 10.1016/j.gaost.2019.04.004.
  • Fooladi, T.; Abdeshahian, P.; Moazami, N.; Soudi, M. R.; Kadier, A.; Yusoff, W. M. W.; Hamid, A. A. Enhanced Biosurfactant Production by Bacillus pumilus 2IR in Fed-Batch Fermentation Using 5-L Bioreactor. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 1111–1123. DOI: 10.1007/s40995-018-0599-4.
  • Kiran, G. S.; Thomas, T. A.; Selvin, J.; Sabarathnam, B.; Lipton, A. P. Optimization and Characterization of a New Lipopeptide Biosurfactant Produced by Marine Brevibacterium aureum MSA13 in Solid State Culture. Bioresour. Technol. 2010, 101, 2389–2396., DOI: 10.1016/j.biortech.2009.11.023.
  • Vilela, W. F. D.; Fonseca, S. G.; Fantinatti-Garboggini, F.; Oliveira, V. M.; Nitschke, M. Production and Properties of a Surface-Active Lipopeptide Produced by a New Marine Brevibacterium luteolum Strain. Appl. Biochem. Biotechnol. 2014, 174, 2245–2256. DOI: 10.1007/s12010-014-1208-4.
  • Chooklin, C. S.; Maneerat, S.; Saimmai, A. Utilization of Banana Peel as a Novel Substrate for Biosurfactant Production by Halobacteriaceae archaeon AS65. Appl. Biochem. Biotechnol. 2014, 173, 624–645. DOI: 10.1007/s12010-014-0870-x.
  • Saimmai, A.; Udomsilp, S.; Maneerat, S. Production and Characterization of Biosurfactant from Marine Bacterium Inquilinus limosus KB3 Grown on Low-Cost Raw Materials. Ann. Microbiol. 2013, 63, 1327–1339. DOI: 10.1007/s13213-012-0592-7.
  • Sarafin, Y.; Donio, M. B. S.; Velmurugan, S.; Michaelbabu, M.; Citarasu, T. Kocuria marina BS-15 a Biosurfactant Producing Halophilic Bacteria Isolated from Solar Salt Works in India. Saudi J. Biol. Sci. 2014, 21, 511–519. DOI: 10.1016/j.sjbs.2014.01.001.
  • Kiran, G. S.; Priyadharsini, S.; Sajayan, A.; Priyadharsini, G. B.; Poulose, N.; Selvin, J. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry. Front. Microbiol. 2017, 8, 1138. DOI: 10.3389/fmicb.2017.01138.
  • Bezza, F. A.; Chirwa, E. M. N. Biosurfactant from Paenibacillus dendritiformis and Its Application in Assisting Polycyclic Aromatic Hydrocarbon (PAH) and Motor Oil Sludge Removal from Contaminated Soil and Sand Media. Process Saf. Environ. Prot. 2015, 98, 354–364. DOI: 10.1016/j.psep.2015.09.004.
  • Kanna, R.; Gummadi, S. N.; Kumar, G. S. Production and Characterization of Biosurfactant by Pseudomonas putida MTCC 2467. J. Biol. Sci. 2014, 14, 436–445. DOI: 10.3923/jbs.2014.436.445.
  • Karbalaei-Heidari, H. R.; Taghavi, L.; Hasanizadeh, P. Functional Evaluation and Physicochemical Characterization of a Lipopeptide Biosurfactant Produced by the Stenotrophomonas sp. IE-93. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 1447–1455., . DOI: 10.1007/s40995-018-0656-z.
  • Sharma, D.; Mandal, S. M.; Manhas, R. K. Purification and Characterization of a Novel Lipopeptide from Streptomyces amritsarensis sp. nov. Active Against Methicillin-Resistant Staphylococcus aureus. AMB Expr. 2014, 4, 50. DOI: 10.1186/s13568-014-0050-y.
  • Banat, I. M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.; Fracchia, L.; Smyth, T.; Marchant, R. Microbial Biosurfactants Production, Applications and Future Potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. DOI: 10.1007/s00253-010-2589-0.
  • Saini, H. S.; Barragán-Huerta, B. E.; Lebrón-Paler, A.; Pemberton, J. E.; Vázquez, R. R.; Burns, A. M.; Marron, M. T.; Seliga, C. J.; Gunatilaka, A. A.; Maier, R. M. Efficient Purification of the Biosurfactant Viscosin from Pseudomonas libanensis Strain M9-3 and Its Physicochemical and Biological Properties. J. Nat. Prod. 2008, 71, 1011–1015. DOI: 10.1021/np800069u.
  • Kuiper, I.; Lagendijk, E. L.; Pickford, R.; Derrick, J. P.; Lamers, G. E.; Thomas-Oates, J. E.; Lugtenberg, B. J.; Bloemberg, G. V. Characterization of Two Pseudomonas putida Lipopeptide Biosurfactants, Putisolvin I and II, Which Inhibit Biofilm Formation and Break down Existing Biofilms. Mol. Microbiol. 2004, 51, 97–113. DOI: 10.1046/j.1365-2958.2003.03751.x.
  • Kim, K. M.; Lee, J. Y.; Kim, C. K.; Kang, J. S. Isolation and Characterization of Surfactin Produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 2009, 32, 711–715. DOI: 10.1007/s12272-009-1509-2.
  • Bartal, A.; Vigneshwari, A.; Bóka, B.; Vörös, M.; Takács, I.; Kredics, L.; Manczinger, L.; Varga, M.; Vágvölgyi, C.; Szekeres, A. Effects of Different Cultivation Parameters on the Production of Surfactin Variants by a Bacillus subtilis Strain. Molecules 2018, 23, 2675. DOI: 10.3390/molecules23102675.
  • Park, G.; Nam, J.; Kim, J.; Song, J.; Kim, P. Il; Min, H. J.; Lee, C. W. Structure and Mechanism of Surfactin Peptide from Bacillus velezensis Antagonistic to Fungi Plant Pathogens. Bull. Korean Chem. Soc. 2019, 40, 704–709. DOI: 10.1002/bkcs.11757.
  • Hentati, D.; Chebbi, A.; Hadrich, F.; Frikha, I.; Rabanal, F.; Sayadi, S.; Manresa, A.; Chamkha, M. Production, Characterization and Biotechnological Potential of Lipopeptide Biosurfactants from a Novel Marine Bacillus stratosphericus Strain FLU5. Ecotoxicol. Environ. Saf. 2019, 167, 441–449. DOI: 10.1016/j.ecoenv.2018.10.036.
  • Arguelles-Arias, A.; Ongena, M.; Halimi, B.; Lara, Y.; Brans, A.; Joris, B.; Fickers, P. Bacillus amyloliquefaciens GA1 as a Source of Potent Antibiotics and Other Secondary Metabolites for Biocontrol of Plant Pathogens. Microb. Cell Fact. 2009, 8, 63. DOI: 10.1186/1475-2859-8-63.
  • Abdallah, D. B.; Tounsi, S.; Gharsallah, H.; Hammami, A.; Frikha-Gargouri, O. Lipopeptides from Bacillus amyloliquefaciens Strain 32a as Promising Biocontrol Compounds against the Plant Pathogen Agrobacterium tumefaciens. Environ. Sci. Pollut. Res. 2018, 25, 36518–36529. DOI: 10.1007/s11356-018-3570-1.
  • Daas, M. S.; Acedo, J. Z.; Rosana, A. R. R.; Orata, F. D.; Reiz, B.; Zheng, J.; Nateche, F.; Case, R. J.; Kebbouche-Gana, S.; Vederas, J. C. Bacillus amyloliquefaciens ssp. plantarum F11 Isolated from Algerian Salty Lake as a Source of Biosurfactants and Bioactive Lipopeptides. FEMS Microbiol. Lett. 2018, 365, fnx248. DOI: 10.1093/femsle/fnx248.
  • Snook, M. E.; Mitchell, T.; Hinton, D. M.; Bacon, C. W. Isolation and Characterization of Leu7-Surfactin from the Endophytic Bacterium Bacillus mojavensis RRC 101, a Biocontrol Agent for Fusarium verticillioides. J. Agric. Food Chem. 2009, 57, 4287–4292. DOI: 10.1021/jf900164h.
  • Balan, S. S.; Kumar, C. G.; Jayalakshmi, S. Pontifactin, a New Lipopeptide Biosurfactant Produced by a Marine Pontibacter korlensis Strain SBK-47: Purification, Characterization and Its Biological Evaluation. Process Biochem. 2016, 51, 2198–2207. DOI: 10.1016/j.procbio.2016.09.009.
  • Burch, A. Y.; Zeisler, V.; Yokota, K.; Schreiber, L.; Lindow, S. E. The Hygroscopic Biosurfactant Syringafactin Produced by Pseudomonas syringae Enhances Fitness on Leaf Surfaces during Fluctuating Humidity. Environ. Microbiol. 2014, 16, 2086–2098. DOI: 10.1111/1462-2920.12437.
  • Rosas-Galván, N. S.; Martínez-Morales, F.; Marquina-Bahena, S.; Tinoco-Valencia, R.; Serrano-Carreón, L.; Bertrand, B.; León-Rodríguez, R.; Guzmán-Aparicio, J.; Alvaréz-Berber, L.; Trejo-Hernández, M. R. Improved Production, Purification, and Characterization of Biosurfactants Produced by Serratia marcescens SM3 and Its Isogenic SMRG-5 Strain. Biotechnol. Appl. Biochem. 2018, 65, 690–700. DOI: 10.1002/bab.1652.
  • Lai, C. C.; Huang, Y. C.; Wei, Y. H.; Chang, J. S. Biosurfactant-Enhanced Removal of Total Petroleum Hydrocarbons from Contaminated Soil. J. Hazard. Mater. 2009, 167, 609–614. DOI: 10.1016/j.jhazmat.2009.01.017.
  • Levy, N.; Bar-Or, Y.; Magdassi, S. Flocculation of Bentonite Particles by a Cyanobacterial Bioflocculant. Colloids Surf. 1990, 48, 337–349. DOI: 10.1016/0166-6622(90)80239-Z.
  • Herman, D. C.; Maier, R. M. Biosynthesis and Applications of Glycolipid and Lipopeptide Biosurfactants. In Lipid Biotechnology, 1st ed., Kuo, T. M.; Gardner, H. W. Marcel Dekker, Eds. Inc.: New York, 2002; pp. 629–654. ISBN 9780429207945.
  • Choi, W. J.; Choi, H. G.; Lee, W. H. Effects of Ethanol and Phosphate on Emulsan Production by Acinetobacter calcoaceticus RAG-1. J. Biotechnol. 1996, 45, 217–225. DOI: 10.1016/0168-1656(95)00175-1.
  • Franzetti, A.; Caredda, P.; Ruggeri, C.; La Colla, P.; Tamburini, E.; Papacchini, M.; Bestetti, G. Potential Applications of Surface Active Compounds by Gordonia sp. strain BS29 in Soil Remediation Technologies. Chemosphere 2009, 75, 801–807. DOI: 10.1016/j.chemosphere.2008.12.052.
  • Barkay, T.; Navon-Venezia, S.; Ron, E. Z.; Rosenberg, E. Enhancement of Solubilization and Biodegradation of Polyaromatic Hydrocarbons by the Bioemulsifier Alasan. Appl. Environ. Microbiol. 1999, 65, 2697–2702. DOI: 10.1128/AEM.65.6.2697-2702.1999.
  • Ali Khan, A. H.; Tanveer, S.; Alia, S.; Anees, M.; Sultan, A.; Iqbal, M.; Yousaf, S. Role of Nutrients in Bacterial Biosurfactant Production and Effect of Biosurfactant Production on Petroleum Hydrocarbon Biodegradation. Ecol. Eng. 2017, 104, 158–164. DOI: 10.1016/j.ecoleng.2017.04.023.
  • Dikit, P.; Maneerat, S.; Saimmai, A. Production and Application of Biosurfactant Produced by Agrobacterium rubi L5 Isolated from Mangrove Sediments. Appl. Mech. Mater. 2019, 886, 98–104. DOI: 10.4028/www.scientific.net/AMM.886.98.
  • Jara, A. M. A. T.; Andrade, R. F. S.; Campos-Takaki, G. M. Physicochemical Characterization of Tensio-Active Produced by Geobacillus stearothermophilus Isolated from Petroleum-Contaminated Soil. Colloids Surf. B Biointerfaces 2013, 101, 315–318. DOI: 10.1016/j.colsurfb.2012.05.021.
  • Pi, Y.; Meng, L.; Bao, M.; Sun, P.; Lu, J. Degradation of Crude Oil and Relationship with Bacteria and Enzymatic Activities in Laboratory Testing. Int. Biodeterior. Biodegrad. 2016, 106, 106–116. DOI: 10.1016/j.ibiod.2015.10.015.
  • Kayanadath, S.; Nathan, V. K.; Ammini, P. Anti-Biofilm Activity of Biosurfactant Derived from Halomonas sp., a Lipolytic Marine Bacterium from the Bay of Bengal. Microbiol. 2019, 88, 585–599. DOI: 10.1134/S0026261719050072.
  • Shuai, Y.; Zhou, H.; Mu, Q.; Zhang, D.; Zhang, N.; Tang, J.; Zhang, C. Characterization of a Biosurfactant-Producing Leclercia sp. B45 with New Transcriptional Patterns of alkB Gene. Ann. Microbiol. 2019, 69, 139–150. DOI: 10.1007/s13213-018-1409-0.
  • Kavitha, S.; Saranya, T.; Kaliappan, S.; Kumar, S. A.; Yeom, I. T.; Banu, J. R. Accelerating the Sludge Disintegration Potential of a Novel Bacterial Strain Planococcus Jake 01 by CaCl2 Induced Deflocculation. Bioresour. Technol. 2015, 175, 396–405. DOI: 10.1016/j.biortech.2014.10.122.
  • Padmavathi, A. R.; Pandian, S. K. Antibiofilm Activity of Biosurfactant Producing Coral Associated Bacteria Isolated from Gulf of Mannar. Indian J. Microbiol. 2014, 54, 376–382. DOI: 10.1007/s12088-014-0474-8.
  • Marqués, A. M.; Burgos-Díaz, C.; Aranda, F. J.; Teruel, J. A.; Manresa, À.; Ortiz, A.; Farfán, M. Sphingobacterium detergens sp. nov., a Surfactant-Producing Bacterium Isolated from Soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 3036–3041. DOI: 10.1099/ijs.0.036707-0.
  • Cortés-Sánchez, A. J.; Hernández-Sánchez, H.; Jaramillo-Flores, M. E. Biological Activity of Glycolipids Produced by Microorganisms: New Trends and Possible Therapeutic Alternatives. Microbiol. Res. 2013, 168, 22–32. DOI: 10.1016/j.micres.2012.07.002.
  • Ekpenyong, M.; Antai, S.; Asitok, A.; Ekpo, B. Response Surface Modeling and Optimization of Major Medium Variables for Glycolipopeptide Production. Biocatal. Agric. Biotechnol. 2017, 10, 113–121. DOI: 10.1016/j.bcab.2017.02.015.
  • Marti, M. E.; Colonna, W. J.; Patra, P.; Zhang, H.; Green, C.; Reznik, G.; Pynn, M.; Jarrell, K.; Nyman, J. A.; Somasundaran, P.; Glatz, C. E.; Lamsal, B. P. Production and Characterization of Microbial Biosurfactants for Potential Use in Oil-Spill Remediation. Enzyme Microb. Technol. 2014, 55, 31–39. DOI: 10.1016/j.enzmictec.2013.12.001.
  • Luna, J. M.; Rufino, R. D.; Jara, A. M. A. T.; Brasileiro, P. P. F.; Sarubbo, L. A. Environmental Applications of the Biosurfactant Produced by Candida sphaerica Cultivated in Low-Cost Substrates. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 413–418. DOI: 10.1016/j.colsurfa.2014.12.014.
  • Almeida, D. G.; Silva, R. C. F. S.; Luna, J. M.; Rufino, R. D.; Santos, V. A.; Sarubbo, L. A. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates. Front. Microbiol. 2017, 8, 157. DOI: 10.3389/fmicb.2017.00157.
  • Cirigliano, M. C.; Carman, G. M. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846–850. DOI: 10.1128/aem.50.4.846-850.1985.
  • Zinjarde, S. S.; Pant, A. Emulsifier from a Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589. J. Basic Microbiol. 2002, 42, 67–73. DOI: 10.1002/1521-4028(200203)42:1<67::AID-JOBM67>3.0.CO;2-M.
  • Katemai, W.; Kaewsuksai, S.; Yaena, L. Isolation of Waste Lubricating Oil-Degrading Microorganisms; Thaksin University J. (in Thai), Thaksin University: Phatthalung, 2010, vol. 12, pp. 202–213.
  • Casas, J. A.; Ochoa, F. Sophorolipid Production by Candida bombicola: Medium Composition and Culture Methods. J. Biosci. Bioeng. 1999, 88, 488–494. DOI: 10.1016/S1389-1723(00)87664-1.
  • Sarubbo, L. A.; Porto, A. L. F.; Campos-Takaki, G. M. The Use of Babassu Oil as Substrate to Produce Bioemulsifiers by Candida lipolytica. Can. J. Microbiol. 1999, 45, 423–426. DOI: 10.1139/w99-025.
  • Sarubbo, L. A.; Marçal, M. C.; Neves, M. L. C.; Silva, M. P. C.; Porto, A. L. F.; Campos-Takaki, G. M. Bioemulsifier Production in Batch Culture Using Glucose as Carbon Source by Candida lipolytica. Appl. Biochem. Biotechnol. 2001, 95, 59–67. DOI: 10.1385/ABAB:95:1:59.
  • Rufino, R. D.; Sarubbo, L. A.; Campos-Takaki, G. M. Enhancement of Stability of Biosurfactant Produced by Candida lipolytica Using Industrial Residue as Substrate. World J. Microbiol. Biotechnol. 2007, 23, 729–734. DOI: 10.1007/s11274-006-9278-2.
  • Cavalero, D. A.; Cooper, D. G. The Effect of Medium Composition on the Structure and Physical State of Sophorolipids Produced by Candida bombicola ATCC 22214. J. Biotechnol. 2003, 103, 31–41. DOI: 10.1016/s0168-1656(03)00067-1.
  • Kitamoto, D.; Ikegami, T.; Suzuki, G. T.; Sasaki, A.; Takeyama, Y.; Idemoto, Y.; Koura, N.; Yanagishita, H. Microbial Conversion of n-Alkanes into Glycolipid Biosurfactants, Mannosylerythritol Lipids, by Pseudozyma (Candida antarctica). Biotechnol. Lett. 2001, 23, 1709–1714. DOI: 10.1023/A:1012464717259.
  • Dzięgielewska, E.; Adamczak, M. Evaluation of Waste Products in the Synthesis of Surfactants by Yeasts. Chem. Pap. 2013, 67, 1113–1122. DOI: 10.2478/s11696-013-0349-1.
  • Sharma, P.; Sangwan, S.; Kaur, H. Process Parameters for Biosurfactant Production Using Yeast Meyerozyma guilliermondii YK32. Environ. Monit. Assess. 2019, 191, 531. DOI: 10.1007/s10661-019-7665-z.
  • Johnson, V.; Singh, M.; Saini, V. S.; Adhikari, D. K.; Sista, V.; Yadav, N. K. Bioemulsifier Production by an Oleaginous Yeast Rhodotorula glutinis IIP-30. Biotechnol. Lett. 1992, 14, 487–490. DOI: 10.1007/BF01023172.
  • Amaral, P. F. F.; Coelho, M. A. Z.; Marrucho, I. M. J.; Coutinho, J. A. P. Biosurfactants from Yeasts: Characteristics, Production and Application. In Biosurfactants, Sen, R., Ed. Adv. Exp. Med. Biol. 2010, 672, 236–249. DOI: 10.1007/978-1-4419-5979-9_18.
  • Zinjarde, S.; Chinnathambi, S.; Lachke, A. H.; Pant, A. Isolation of an Emulsifier from Yarrowia lipolytica NCIM 3589 Using a Modified Mini Isoelectric Focusing Unit. Lett. Appl. Microbiol. 1997, 24, 117–121. DOI: 10.1046/j.1472-765X.1997.00355.x.
  • Persson, A.; Molin, G.; Weibull, C. Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture. Appl. Environ. Microbiol. 1990, 56, 686–692. DOI: 10.1128/aem.56.3.686-692.1990.
  • Bednarski, W.; Adamczak, M.; Tomasik, J.; Płaszczyk, M. Application of Oil Refinery Waste in the Biosynthesis of Glycolipids by Yeast. Bioresour. Technol. 2004, 95, 15–18. DOI: 10.1016/j.biortech.2004.01.009.
  • Deshpande, M.; Daniels, L. Evaluation of Sophorolipid Biosurfactant Production by Candida bombicola Using Animal Fat. Bioresour. Technol. 1995, 54, 143–150. DOI: 10.1016/0960-8524(95)00116-6.
  • Luna, J. M.; Rufino, R. D.; Campos-Takaki, G. M.; Sarubbo, L. A. Properties of the Biosurfactant Produced by Candida sphaerica Cultivated in Low-Cost Substrates. Chem. Eng. Trans. 2012, 27, 67–72. DOI: 10.3303/CET1227012.
  • Padmapriya, B.; Suganthi, S.; Anishya, R. S. Screening, Optimization and Production of Biosurfactants by Candida Species Isolated from Oil Polluted Soils. American-Eurasian J. Agric. Environ. Sci. 2013, 13, 227–233. DOI: 10.5829/idosi.aejaes.2013.13.02.2744.
  • Mathur, S.; Modi, K.; Jeph, G. Production of Biosurfactants from Agro-Industrial Wastes. Int. J. Curr. Res. 2016, 8, 27339–27344.
  • Gusmão, C. A. B.; Rufino, R. D.; Sarubbo, L. A. Laboratory Production and Characterization of a New Biosurfactant from Candida glabrata UCP1002 Cultivated in Vegetable Fat Waste Applied to the Removal of Hydrophobic Contaminant. World J. Microbiol. Biotechnol. 2010, 26, 1683–1692. DOI: 10.1007/s11274-010-0346-2.
  • Makkar, R. S.; Cameotra, S. S.; Banat, I. M. Advances in Utilization of Renewable Substrates for Biosurfactant Production. AMB Expr. 2011, 1, 5. DOI: 10.1186/2191-0855-1-5.
  • Saimmai, A.; Tani, A.; Sobhon, V.; Maneerat, S. Mangrove Sediment, a New Source of Potential Biosurfactant-Producing Bacteria. Ann. Microbiol. 2012, 62, 1669–1679. DOI: 10.1007/s13213-012-0424-9.
  • Santos, D. K. F.; Rufino, R. D.; Luna, J. M.; Santos, V. A.; Salgueiro, A. A.; Sarubbo, L. A. Synthesis and Evaluation of Biosurfactant Produced by Candida lipolytica Using Animal Fat and Corn Steep Liquor. J. Petrol. Sci. Eng. 2013, 105, 43–50. DOI: 10.1016/j.petrol.2013.03.028.
  • Ramírez, I. M.; Vaz, D. A.; Banat, I. M.; Marchant, R.; Alameda, E. J.; Román, M. G. Hydrolysis of Olive Mill Waste to Enhance Rhamnolipids and Surfactin Production. Bioresour. Technol. 2016, 205, 1–6. DOI: 10.1016/j.biortech.2016.01.016.
  • Haba, E.; Espuny, M. J.; Busquets, M.; Manresa, A. Screening and Production of Rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from Waste Frying Oils. J. Appl. Microbiol. 2000, 88, 379–387. DOI: 10.1046/j.1365-2672.2000.00961.x.
  • Sobrinho, H. B. S.; Rufino, R. D.; Luna, J. M.; Salgueiro, A. A.; Campos-Takaki, G. M.; Leite, L. F. C.; Sarubbo, L. A. Utilization of Two Agroindustrial by-Products for the Production of a Surfactant by Candida sphaerica UCP0995. Process Biochem. 2008, 43, 912–917. DOI: 10.1016/j.procbio.2008.04.013.
  • Daverey, A.; Pakshirajan, K. Production of Sophorolipids by the Yeast Candida bombicola Using Simple and Low Cost Fermentative Media. Food Res. Int. 2009, 42, 499–504. DOI: 10.1016/j.foodres.2009.01.014.
  • Souza, A. F.; Rodriguez, D. M.; Ribeaux, D. R.; Luna, M. A. C.; Lima e Silva, T. A.; Andrade, R. F. S.; Gusmão, N. B.; Campos-Takaki, G. M. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998. Int. J. Mol. Sci. 2016, 17, 1608. DOI: 10.3390/ijms17101608.
  • Lima, R. A.; Andrade, R. F. S.; Rodríguez, D. M.; Araújo, H. W. C.; Santos, V. P.; Campos-Takaki, G. M. Production and Characterization of Biosurfactant Isolated from Candida glabrata Using Renewable Substrates. Afr. J. Microbiol. Res. 2017, 11, 237–244. DOI: 10.5897/AJMR2016.8341.
  • Rubio-Ribeaux, D.; Andrade, R. F. S.; Silva, G. S.; Holanda, R. A.; Pele, M. A.; Nunes, P.; Junior, J. C. V.; Resende-Stoianoff, M. A.; Campos-Takaki, G. M. Promising Biosurfactant Produced by a New Candida tropicalis UCP 1613 Strain Using Substrates from Renewable-Resources. Afr. J. Microbiol. Res. 2017, 11, 981–991. DOI: 10.5897/AJMR2017.8486.
  • Fontes, G. C.; Ramos, N. M.; Amaral, P. F. F.; Nele, M.; Coelho, M. A. Z. Renewable Resources for Biosurfactant Production by Yarrowia lipolytica. Braz. J. Chem. Eng. 2012, 29, 483–493. DOI: 10.1590/S0104-66322012000300005.
  • Kim, H. S.; Jeon, J. W.; Kim, S. B.; Oh, H. M.; Kwon, T. J.; Yoon, B. D. Surface and Physico-Chemical Properties of a Glycolipid Biosurfactant, Mannosylerythritol Lipid, from Candida antarctica. Biotechnol. Lett. 2002, 24, 1637–1641. DOI: 10.1023/A:1020309816545.
  • Andrade, R. F. S.; Antunes, A. A.; Lima, R. A.; Araújo, H. W. C.; Resende-Stoianoff, M. A.; Franco, L. O.; Campos-Takaki, G. M. Enhanced Production of an Glycolipid Biosurfactant Produced by Candida glabrata UCP/WFCC1556 for Application in Dispersion and Removal of Petroderivatives. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 563–576.
  • Santos, D. K. F.; Meira, H. M.; Rufino, R. D.; Luna, J. M.; Sarubbo, L. A. Biosurfactant Production from Candida lipolytica in Bioreactor and Evaluation of Its Toxicity for Application as a Bioremediation Agent. Process Biochem. 2017, 54, 20–27. DOI: 10.1016/j.procbio.2016.12.020.
  • Souza, K. S. T.; Gudiña, E. J.; Azevedo, Z.; Freitas, V.; Schwan, R. F.; Rodrigues, L. R.; Dias, D. R.; Teixeira, J. A. New Glycolipid Biosurfactants Produced by the Yeast Strain Wickerhamomyces anomalus CCMA 0358. Colloids Surf. B Biointerfaces 2017, 154, 373–382., DOI: 10.1016/j.colsurfb.2017.03.041.
  • Savarino, P.; Montoneri, E.; Biasizzo, M.; Quagliotto, P.; Viscardi, G.; Boffa, V. Upgrading Biomass Wastes in Chemical Technology. Humic Acid-like Matter Isolated from Compost as Chemical Auxiliary for Textile Dyeing. J. Chem. Technol. Biotechnol. 2007, 82, 939–948. DOI: 10.1002/jctb.1767.
  • Ferreira, N. L. Industrial Exploitation of Renewable Resources: From Ethanol Production to Bioproducts Development. J. Soc. Biol. 2008, 202, 191–199. DOI: 10.1051/jbio:2008021.
  • Silva, G. P.; Mack, M.; Contiero, J. Glycerol: A Promising and Abundant Carbon Source for Industrial Microbiology. Biotechnol. Adv. 2009, 27, 30–39. DOI: 10.1016/j.biotechadv.2008.07.006.
  • Samad, A.; Zhang, J.; Chen, D.; Liang, Y. Sophorolipid Production from Biomass Hydrolysates. Appl. Biochem. Biotechnol. 2015, 175, 2246–2257. DOI: 10.1007/s12010-014-1425-x.
  • Samad, A.; Zhang, J.; Chen, D.; Chen, X.; Tucker, M.; Liang, Y. Sweet Sorghum Bagasse and Corn Stover Serving as Substrates for Producing Sophorolipids. J. Ind. Microbiol. Biotechnol. 2017, 44, 353–362. DOI: 10.1007/s10295-016-1891-y.
  • Jiménez-Peñalver, P.; Gea, T.; Sánchez, A.; Font, X. Production of Sophorolipids from Winterization Oil Cake by Solid-State Fermentation: Optimization, Monitoring and Effect of Mixing. Biochem. Eng. J. 2016, 115, 93–100. DOI: 10.1016/j.bej.2016.08.006.
  • Minucelli, T.; Ribeiro-Viana, R. M.; Borsato, D.; Andrade, G.; Cely, M. V. T.; Oliveira, M. R.; Baldo, C.; Celligoi, M. A. P. C. Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Soil Bioremediation. Waste Biomass Valor. 2017, 8, 743–753. DOI: 10.1007/s12649-016-9592-3.
  • Jadhav, J. V.; Pratap, A. P.; Kale, S. B. Evaluation of Sunflower Oil Refinery Waste as Feedstock for Production of Sophorolipid. Process Biochem. 2019, 78, 15–24. DOI: 10.1016/j.procbio.2019.01.015.
  • Marcelino, P. R. F.; Silva, V. L.; Philippini, R. R.; Zuben, C. J. V.; Contiero, J.; Santos, J. C.; Silva, S. S. Biosurfactants Produced by Scheffersomyces stipitis Cultured in Sugarcane Bagasse Hydrolysate as New Green Larvicides for the Control of Aedes aegypti, a Vector of Neglected Tropical Diseases. PLOS One 2017, 12, e0187125. DOI: 10.1371/journal.pone.0187125.
  • Derguine-Mecheri, L.; Kebbouche-Gana, S.; Khemili-Talbi, S.; Djenane, D. Screening and Biosurfactant/Bioemulsifier Production from a High-Salt-Tolerant Halophilic Cryptococcus Strain YLF Isolated from Crude Oil. J. Petrol. Sci. Eng. 2018, 162, 712–724. DOI: 10.1016/j.petrol.2017.10.088.
  • Moldes, A. B.; Torrado, A. M.; Barral, M. T.; Domínguez, J. M. Evaluation of Biosurfactant Production from Various Agricultural Residues by Lactobacillus pentosus. J. Agric. Food Chem. 2007, 55, 4481–4486. DOI: 10.1021/jf063075g.
  • Das, K.; Mukherjee, A. K. Comparison of Lipopeptide Biosurfactants Production by Bacillus subtilis Strains in Submerged and Solid State Fermentation Systems Using a Cheap Carbon Source: Some Industrial Applications of Biosurfactants. Process Biochem. 2007, 42, 1191–1199. DOI: 10.1016/j.procbio.2007.05.011.
  • Rane, A. N.; Baikar, V. V.; Kumar, V. R.; Deopurkar, R. L. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles. Front. Microbiol. 2017, 8, 492–503. DOI: 10.3389/fmicb.2017.00492.
  • Rastogi, S.; Tiwari, S.; Ratna, S.; Kumar, R. Utilization of Agro-Industrial Waste for Biosurfactant Production under Submerged Fermentation and Its Synergistic Application in Biosorption of Pb2+. Bioresour. Technol. Rep. 2021, 15, 100706. DOI: 10.1016/j.biteb.2021.100706.
  • George, S.; Jayachandran, K. Analysis of Rhamnolipid Biosurfactants Produced through Submerged Fermentation Using Orange Fruit Peelings as Sole Carbon Source. Appl. Biochem. Biotechnol. 2009, 158, 694–705. DOI: 10.1007/s12010-008-8337-6.
  • Singh, P.; Tiwary, B. N. Isolation and Characterization of Glycolipid Biosurfactant Produced by a Pseudomonas otitidis Strain Isolated from Chirimiri Coal Mines, India. Bioresour. Bioprocess. 2016, 3, 42. DOI: 10.1186/s40643-016-0119-3.
  • Faisal, Z. G.; Mahdi, M. S.; Alobaidi, K. H. Optimization and Chemical Characterization of Biosurfactant Produced from a Novel Pseudomonas guguanensis Strain Iraqi ZG.K.M. Int. J. Microbiol. 2023, 2023, 1571991. DOI: 10.1155/2023/1571991.
  • Chauhan, V.; Dhiman, V. K.; Kanwar, S. S. Purification and Characterization of a Novel Bacterial Lipopeptide(s) Biosurfactant and Determining Its Antimicrobial and Cytotoxic Properties. Process Biochem. 2022, 120, 114–125. DOI: 10.1016/j.procbio.2022.06.005.
  • Correia, J.; Gudiña, E. J.; Lazar, Z.; Janek, T.; Teixeira, J. A. Cost-Effective Rhamnolipid Production by Burkholderia thailandensis E264 Using Agro-Industrial Residues. Appl. Microbiol. Biotechnol. 2022, 106, 7477–7489. DOI: 10.1007/s00253-022-12225-1.
  • Satpute, S. K.; Banat, I. M.; Dhakephalkar, P. K.; Banpurkar, A. G.; Chopade, B. A. Biosurfactants, Bioemulsifiers and Exopolysaccharides from Marine Microorganisms. Biotechnol. Adv. 2010, 28, 436–450. DOI: 10.1016/j.biotechadv.2010.02.006.
  • Amani, H.; Muller, M. M.; Syldatk, C.; Hausmann, R. Production of Microbial Rhamnolipid by Pseudomonas aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery. Appl. Biochem. Biotechnol. 2013, 170, 1080–1093. DOI: 10.1007/s12010-013-0249-4.
  • Saikia, R. R.; Deka, H.; Goswami, D.; Lahkar, J.; Borah, S. N.; Patowary, K.; Baruah, P.; Deka, S. Achieving the Best Yield in Glycolipid Biosurfactant Preparation by Selecting the Proper Carbon/Nitrogen Ratio. J. Surfact. Deterg. 2014, 17, 563–571. DOI: 10.1007/s11743-013-1520-y.
  • Heyd, M.; Franzreb, M.; Berensmeier, S. Continuous Rhamnolipid Production with Integrated Product Removal by Foam Fractionation and Magnetic Separation of Immobilized Pseudomonas aeruginosa. Biotechnol. Prog. 2011, 27, 706–716. DOI: 10.1002/btpr.607.
  • Chen, H. L.; Juang, R. S. Recovery and Separation of Surfactin from Pretreated Fermentation Broths by Physical and Chemical Extraction. Biochem. Eng. J. 2008, 38, 39–46. DOI: 10.1016/j.bej.2007.06.003.
  • Gautam, K. K.; Tyagi, V. K. Microbial Surfactants: A Review. J. Oleo Sci. 2006, 55, 155–166. DOI: 10.5650/jos.55.155.
  • Morita, T.; Masaaki, K.; Fukuoka, T.; Imura, T.; Kitamoto, D. Physiological Differences in the Formation of the Glycolipid Biosurfactants, Mannosylerythritol Lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2007, 74, 307–315. DOI: 10.1007/s00253-006-0672-3.
  • Katemai, W. Biosurfactants from Yeasts. Walailak J. Sci. Tech. 2012, 9, 1–8. DOI: 10.2004/wjst.v9i1.24.
  • Nitschke, M.; Pastore, G. M. Cassava Flour Wastewater as a Substrate for Biosurfactant Production. Appl. Biochem. Biotechnol. 2003, 106, 295–301. DOI: 10.1385/ABAB:106:1-3:295.
  • Long, X.; Meng, Q.; Sha, R.; Huang, Q.; Zhang, G. Two-Step Ultrafiltration of Rhamnolipids Using PSU-g-PEG Membrane. J. Membr. Sci. 2012, 409/410, 105–112. DOI: 10.1016/j.memsci.2012.03.039.
  • Yoshikawa, J.; Morita, T.; Fukuoka, T.; Konishi, M.; Imura, T.; Kakugawa, K.; Kitamoto, D. Selective Production of Two Diastereomers of Disaccharide Sugar Alcohol, Mannosylerythritol by Pseudozyma Yeasts. Appl. Microbiol. Biotechnol. 2014, 98, 823–830. DOI: 10.1007/s00253-013-5376-x.
  • Haba, E.; Bouhdid, S.; Torrego-Solana, N.; Marqués, A. M.; Espuny, M. J.; García-Celma, M. J.; Manresa, A. Rhamnolipids as Emulsifying Agents for Essential Oil Formulations: Antimicrobial Effect against Candida albicans and Methicillin-Resistant Staphylococcus aureus. Int. J. Pharm. 2014, 476, 134–141. DOI: 10.1016/j.ijpharm.2014.09.039.
  • Gudiña, E. J.; Rodrigues, A. I.; Alves, E.; Domingues, M. R.; Teixeira, J. A.; Rodrigues, L. R. Bioconversion of Agro-Industrial by-Products in Rhamnolipids toward Applications in Enhanced Oil Recovery and Bioremediation. Bioresour. Technol. 2015, 177, 87–93. DOI: 10.1016/j.biortech.2014.11.069.
  • Matsufuji, M.; Nakata, K.; Yoshimoto, A. High Production of Rhamnolipids by Pseudomonas aeruginosa Growing on Ethanol. Biotechnol. Lett. 1997, 19, 1213–1215. DOI: 10.1023/A:1018489905076.
  • Wadekar, S.; Kale, S.; Lali, A.; Bhowmick, D.; Pratap, A. Sophorolipid Production by Starmerella bombicola (ATCC 22214) from Virgin and Waste Frying Oils, and the Effects of Activated Earth Treatment of the Waste Oils. J. Am. Oil Chem. Soc. 2012, 89, 1029–1039. DOI: 10.1007/s11746-011-1986-6.
  • Li, H.; Ma, X. J.; Wang, S.; Song, X. Production of Sophorolipids with Eicosapentaenoic Acid and Docosahexaenoic Acid from Wickerhamiella domercqiae Var. sophorolipid Using Fish Oil as a Hydrophobic Carbon Source. Biotechnol. Lett. 2013, 35, 901–908. DOI: 10.1007/s10529-013-1151-4.
  • Yoshida, S.; Morita, T.; Shinozaki, Y.; Watanabe, T.; Sameshima-Yamashita, Y.; Koitabashi, M.; Kitamoto, D.; Kitamoto, H. Mannosylerythritol Lipids Secreted by Phyllosphere Yeast Pseudozyma antarctica is Associated with its Filamentous Growth and Propagation on Plant Surfaces. Appl. Microbiol. Biotechnol. 2014, 98, 6419–6429. DOI: 10.1007/s00253-014-5675-x.
  • Alcantara, V. A.; Pajares, I. G.; Simbahan, J. F.; Edding, S. N. Downstream Recovery and Purification of a Bioemulsifier from Saccharomyces cerevisiae 2031. Philipp. Agric. Scientist 2013, 96, 349–358.
  • Satpute, S. K.; Banpurkar, A. G.; Dhakephalkar, P. K.; Banat, I. M.; Chopade, B. A. Methods for Investigating Biosurfactants and Bioemulsifiers: A Review. Crit. Rev. Biotechnol. 2010, 30, 127–144. DOI: 10.3109/07388550903427280.
  • Sachdev, D. P.; Cameotra, S. S. Biosurfactants in Agriculture. Appl. Microbiol. Biotechnol. 2013, 97, 1005–1016. DOI: 10.1007/s00253-012-4641-8.
  • Jha, S. S.; Joshi, S. J.; Geetha, S. J. Lipopeptide Production by Bacillus subtilis R1 and its Possible Applications. Braz. J. Microbiol. 2016, 47, 955–964. DOI: 10.1016/j.bjm.2016.07.006.
  • Karlapudi, A. P.; Venkateswarulu, T. C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B. K.; Dirisala, V. R.; Kodali, V. P. Role of Biosurfactants in Bioremediation of Oil Pollution-a Review. Petrol. 2018, 4, 241–249. DOI: 10.1016/j.petlm.2018.03.007.
  • Roelants, S.; Solaiman, D. K. Y.; Ashby, R. D.; Lodens, S.; Van Renterghem, L.; Soetaert, W. Chapter 3 – Production and Applications of Sophorolipids. In Biobased Surfactants, 2nd Ed., Hayes, D. G.; Solaiman, D. K. Y.; Ashby, R. D., Eds. Synthesis, Properties, and Applications, AOCS Press, Elsevier, 2019, pp. 65–119. ISBN 9780128127056. DOI: 10.1016/B978-0-12-812705-6.00003-4.
  • Mulligan, C. N. Recent Advances in the Environmental Applications of Biosurfactants. Curr. Opin. Colloid Interface Sci. 2009, 14, 372–378. DOI: 10.1016/j.cocis.2009.06.005.
  • Pacwa-Płociniczak, M.; Płaza, G. A.; Piotrowska-Seget, Z.; Cameotra, S. S. Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol. Sci. 2011, 12, 633–654. DOI: 10.3390/ijms12010633.
  • He, S.; Ni, Y.; Lu, L.; Chai, Q.; Yu, T.; Shen, Z.; Yang, C. Simultaneous Degradation of n-Hexane and Production of Biosurfactants by Pseudomonas sp. strain NEE2 Isolated from Oil-Contaminated Soils. Chemosphere 2020, 242, 125237. DOI: 10.1016/j.chemosphere.2019.125237.
  • Chaprão, M. J.; Ferreira, I. N. S.; Correa, P. F.; Rufino, R. D.; Luna, J. M.; Silva, E. J.; Sarubbo, L. A. Application of Bacterial and Yeast Biosurfactants for Enhanced Removal and Biodegradation of Motor Oil from Contaminated Sand. Electron. J. Biotechnol. 2015, 18, 471–479. DOI: 10.1016/j.ejbt.2015.09.005.
  • Almeida, D. G.; Silva, R. C. F. S.; Meira, H. M.; Brasileiro, P. P. F.; Silva, E. J.; Luna, J. M.; Rufino, R. D.; Sarubbo, L. A. Production, Characterization and Commercial Formulation of a Biosurfactant from Candida tropicalis UCP0996 and Its Application in Decontamination of Petroleum Pollutants. Processes 2021, 9, 885. DOI: 10.3390/pr9050885.
  • Hua, Z.; Chen, Y.; Du, G.; Chen, J. Effects of Biosurfactants Produced by Candida antarctica on the Biodegradation of Petroleum Compounds. World J. Microbiol. Biotechnol. 2004, 20, 25–29. DOI: 10.1023/B:WIBI.0000013287.11561.d4.
  • Sivapathasekaran, C.; Sen, R. Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential. Tenside Surfact. Deterg. 2017, 54, 92–107. DOI: 10.3139/113.110482.
  • Hirata, Y.; Ryu, M.; Oda, Y.; Igarashi, K.; Nagatsuka, A.; Furuta, T.; Sugiura, M. Novel Characteristics of Sophorolipids, Yeast Glycolipid Biosurfactants, as Biodegradable Low-Foaming Surfactants. J. Biosci. Bioeng. 2009, 108, 142–146. DOI: 10.1016/j.jbiosc.2009.03.012.
  • Crouzet, J.; Arguelles-Arias, A.; Dhondt-Cordelier, S.; Cordelier, S.; Pršić, J.; Hoff, G.; Mazeyrat-Gourbeyre, F.; Baillieul, F.; Clément, C.; Ongena, M.; Dorey, S. Biosurfactants in Plant Protection against Diseases: Rhamnolipids and Lipopeptides Case Study. Front. Bioeng. Biotechnol. 2020, 8, 1014. DOI: 10.3389/fbioe.2020.01014.
  • Csutak, O.; Stoica, I.; Vassu, T. Evaluation of Production, Stability and Activity of Biosurfactants from Yeasts with Application in Bioremediation of Oil-Polluted Environment. Rev. Chim. 2012, 63, 973–977.
  • Geetha, S. J.; Banat, I. M.; Josh, S. J. Biosurfactants: Production and Potential Applications in Microbial Enhanced Oil Recovery (MEOR). Biocatal. Agric. Biotechnol. 2018, 14, 23–32. DOI: 10.1016/j.bcab.2018.01.010.
  • Whang, L. M.; Liu, P. W.; Ma, C. C.; Cheng, S. S. Application of Biosurfactants, Rhamnolipid, and Surfactin, for Enhanced Biodegradation of Diesel-Contaminated Water and Soil. J. Hazard. Mater. 2008, 151, 155–163. DOI: 10.1016/j.jhazmat.2007.05.063.
  • Sharma, A.; Jansen, R.; Nimtz, M.; Johri, B. N.; Wray, V. Rhamnolipids from the Rhizosphere Bacterium Pseudomonas sp. GRP3 That Reduces Damping-off Disease in Chilli and Tomato Nurseries. J. Nat. Prod. 2007, 70, 941–947. DOI: 10.1021/np0700016.
  • Sánchez, M.; Aranda, F. J.; Teruel, J. A.; Espuny, M. J.; Marqués, A.; Manresa, Á.; Ortiz, A. Permeabilization of Biological and Artificial Membranes by a Bacterial Dirhamnolipid Produced by Pseudomonas aeruginosa. J. Colloid Interface Sci. 2010, 341, 240–247. DOI: 10.1016/j.jcis.2009.09.042.
  • Abbasi, H.; Aranda, F. J.; Noghabi, K. A.; Ortiz, A. A Bacterial Monorhamnolipid Alters the Biophysical Properties of Phosphatidylethanolamine Model Membranes. Biochim. Biophys. Acta – Biomembr. 2013, 1828, 2083–2090. DOI: 10.1016/j.bbamem.2013.04.024.
  • Abdel-Mawgoud, A. M.; Lepine, F.; Deziel, E. Rhamnolipids: Diversity of Structures, Microbial Origins and Roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336. DOI: 10.1007/s00253-010-2498-2.
  • Alcantara, V. A.; Pajares, I. G.; Simbahan, J. F.; Villarante, N. R.; Rubio, L. D. Characterization of Biosurfactant from Saccharomyces cerevisiae 2031 and Evaluation of Emulsification Activity for Potential Application in Bioremediation. Philipp. Agric. Scientist 2010, 93, 22–30.
  • Dikit, P.; Maneerat, S.; Musikasang, H.; H-Kittikun, A. Emulsifier Properties of the Mannoprotein Extract from Yeast Isolated from Sugar Palm Wine. ScienceAsia 2010, 36, 312–318. DOI: 10.2306/scienceasia1513-1874.2010.36.312.
  • Sharma, M.; Kulshrestha, S. Colletotrichum gloeosporioides: An Anthracnose Causing Pathogen of Fruits and Vegetables. Biosci. Biotechnol. Res. Asia 2015, 12, 1233–1246. DOI: 10.13005/bbra/1776.
  • Dengle-Pulate, V.; Chandorkar, P.; Bhagwat, S.; Prabhune, A. A. Antimicrobial and SEM Studies of Sophorolipids Synthesized Using Lauryl Alcohol. J. Surfact. Deterg. 2014, 17, 543–552. DOI: 10.1007/s11743-013-1495-8.
  • Thenmozhi, M.; Boominathan, M. Purification and Characterization of Glycolipid Biosurfactant from an Estuarine Yeast Candida tropicalis. Am. J. Biol. Pharm. Res. 2016, 3, 14–18. Corpus ID: 88765885.
  • Halvaeezadeh, M.; Mahmoudabadi, A. Z. Anti-Candida Activity of Biosurfactant Produced by Rhodotorula paludigena. Curr. Enzyme Inhib. 2017, 13, 204–209. DOI: 10.2174/1573408013666161219150524.
  • Luna, J. M.; Sarubbo, L.; Campos-Takaki, G. M. A New Biosurfactant Produced by Candida glabrata UCP 1002: Characteristics of Stability and Application in Oil Recovery. Braz. Arch. Biol. Technol. 2009, 52, 785–793. DOI: 10.1590/S1516-89132009000400001.
  • Pereira, J. F. B.; Gudiña, E. J.; Costa, R.; Vitorino, R.; Teixeira, J. A.; Coutinho, J. A. P.; Rodrigues, L. R. Optimization and Characterization of Biosurfactant Production by Bacillus subtilis Isolates towards Microbial Enhanced Oil Recovery Applications. Fuel 2013, 111, 259–268. DOI: 10.1016/j.fuel.2013.04.040.
  • Gudiña, E. J.; Fernandes, E. C.; Rodrigues, A. I.; Teixeira, J. A.; Rodrigues, L. R. Biosurfactant Production by Bacillus subtilis Using Corn Steep Liquor as Culture Medium. Front. Microbiol. 2015, 6, 59. DOI: 10.3389/fmicb.2015.00059.
  • Almeida, D. G.; Silva, R. C. F. S.; Brasileiro, P. P. F.; Luna, J. M.; Silva, M. G. C.; Rufino, R. D.; Costa, A. F. S.; Santos, V. A.; Sarubbo, L. A. Application of a Biosurfactant from Candida tropicalis UCP 0996 Produced in Low-Cost Substrates for Hydrophobic Contaminants Removal. Chem. Eng. Trans. 2018, 64, 541–546. DOI: 10.3303/CET1864091.
  • Yalçın, H. T.; Ergin-Tepebaşı, G.; Uyar, E. Isolation and Molecular Characterization of Biosurfactant Producing Yeasts from the Soil Samples Contaminated with Petroleum Derivatives. J. Basic Microbiol. 2018, 58, 782–792. DOI: 10.1002/jobm.201800126.
  • Banat, I. M.; Satpute, S. K.; Cameotra, S. S.; Patil, R.; Nyayanit, N. V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. DOI: 10.3389/fmicb.2014.00697.
  • Varjani, S. J.; Upasani, V. N. Critical Review on Biosurfactant Analysis, Purification and Characterization Using Rhamnolipid as a Model Biosurfactant. Bioresour. Technol. 2017, 232, 389–397. DOI: 10.1016/j.biortech.2017.02.047.
  • Matlawska, W. B. I.; Pilewski, N. A. Natural Flavonoids as Antimicrobial Agents. J. Am. Nutraceut. Ass. 2004, 7, 24–31.
  • Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. DOI: 10.1007/s11101-018-9591-z.
  • Cushnie, T. P. T.; Lamb, A. J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. DOI: 10.1016/j.ijantimicag.2005.09.002.
  • Bitencourt, T. A.; Komoto, T. T.; Marins, M.; Fachin, A. L. Antifungal Activity of Flavonoids and Modulation of Expression of Genes of Fatty Acid Synthesis in the Dermatophyte Trichophyton rubrum. BMC Proc. 2014, 8, P53. DOI: 10.1186/1753-6561-8-S4-P53.
  • Ndlovu, T.; Rautenbach, M.; Vosloo, J. A.; Khan, S.; Khan, W. Characterisation and Antimicrobial Activity of Biosurfactant Extracts Produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa Isolated from a Wastewater Treatment Plant. AMB Expr. 2017, 7, 108. DOI: 10.1186/s13568-017-0363-8.
  • Sotirova, A. V.; Spasova, D. I.; Galabova, D. N.; Karpenko, E.; Shulga, A. Rhamnolipid-Biosurfactant Permeabilizing Effects on Gram-Positive and Gram-Negative Bacterial Strains. Curr. Microbiol. 2008, 56, 639–644. DOI: 10.1007/s00284-008-9139-3.
  • Otzen, D. E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta – Biomembr. 2017, 1859, 639–649. DOI: 10.1016/j.bbamem.2016.09.024.
  • Maneerat, S.; Nitoda, T.; Kanzaki, H.; Kawai, F. Bile Acids Are New Products of a Marine Bacterium, Myroides sp. strain SM1. Appl. Microbiol. Biotechnol. 2005, 67, 679–683. DOI: 10.1007/s00253-004-1777-1.
  • Kasture, M.; Singh, S.; Patel, P.; Joy, P. A.; Prabhune, A. A.; Ramana, C. V.; Prasad, B. L. V. Multiutility Sophorolipids as Nanoparticle Capping Agents: Synthesis of Stable and Water Dispersible Co Nanoparticles. Langmuir 2007, 23, 11409–11412., DOI: 10.1021/la702931j.
  • Reddy, A. S.; Kuo, Y.-H.; Atla, S. B.; Chen, C.-Y.; Chen, C.-C.; Shih, R.-C.; Chang, Y.-F.; Maity, J. P.; Chen, H.-J. Low-Temperature Synthesis of Rose-like ZnO Nanostructures Using Surfactin and Their Photocatalytic Activity. J. Nanosci. Nanotechnol. 2011, 11, 5034–5041. DOI: 10.1166/jnn.2011.4191.
  • Singh, B. R.; Dwivedi, S.; Al-Khedhairy, A. A.; Musarrat, J. Synthesis of Stable Cadmium Sulfide Nanoparticles Using Surfactin Produced by Bacillus amyloliquifaciens Strain KSU-109. Colloids Surf. B Biointerfaces 2011, 85, 207–213. DOI: 10.1016/j.colsurfb.2011.02.030.
  • Baccile, N.; Noiville, R.; Stievano, L.; Bogaert, I. V. Sophorolipids-Functionalized Iron Oxide Nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 1606–1620. DOI: 10.1039/C2CP41977G.
  • Rangarajan, V.; Majumder, S.; Sen, R. Biosurfactant-Mediated Nanoparticle Synthesis: A Green and Sustainable Approach. In Biosurfactants Research Trends and Applications, 1st ed., Mulligan, C. N.; Sharma, S. K.; Mudhoo, A., Eds. CRC Press: Boca Raton, London, New York; 2014, pp. 217–229. ISBN 9780429098864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.