343
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all

References

  • Schultz, M. P.; Bendick, J.; Holm, E.; Hertel, W. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling 2011, 27, 87–98. DOI: 10.1080/08927014.2010.542809..
  • Jones, G. The Battle against Marine Biofouling: A Historical Review. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds. Woodhead Publishing; Sawston, 2009; pp. 19–45.
  • Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling Technology—Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat. 2004, 50, 75–104. DOI: 10.1016/j.porgcoat.2003.06.001.
  • Smith, T. W. P.; Jalkanen, J. P.; Anderson, B. A.; Corbett, J. J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; Raucci, C.; et al. Third International Maritime Organization Greenhouse Gas Study, 2014. London, UK: International Maritime Organization, 2015. 327 p.
  • Almeida, J. R.; Vasconcelos, V. Natural Antifouling Compounds: Effectiveness in Preventing Invertebrate Settlement and Adhesion. Biotechnol. Adv. 2015, 33, 343–357. DOI: 10.1016/j.biotechadv.2015.01.013.
  • Satheesh, S.; Ba-Akdah, M. A.; Al-Sofyani, A. A. Natural antifouling Compound Production by Microbes Associated with Marine Macroorganisms: A Review. Electron. J. Biotechnol. 2016, 21, 26–35. DOI: 10.1016/j.ejbt.02.002.
  • Modolon, F.; Barno, A. R.; Villela, H. D.; Peixoto, R. S. Ecological and Biotechnological Importance of Secondary Metabolites Produced by Coral‐Associated Bacteria. J. Appl. Microbiol. 2020, 129, 1441–1457. DOI: 10.1111/jam.14766..
  • Liu, L.; Zheng, Y.-Y.; Shao, C.-L.; Wang, C.-Y. Metabolites from Marine Invertebrates and Their Symbiotic Microorganisms: Molecular Diversity Discovery, Mining, and Application. Mar. Life Sci. Technol. 2019, 1, 60–94. DOI: 10.1007/s42995-019-00021-2.
  • Vimala, R. Marine Organisms: A Potential Source of Natural Antifouling Metabolites. Int. J. ChemTech Res. 2016, 9, 208–217.
  • Kon-Ya, K.; Shimidzu, N.; Otaki, N.; Yokoyama, A.; Adachi, K.; Miki, W. Inhibitory effect of Bacterial Ubiquinones on the Settling of Barnacle, Balanus Amphitrite. Experientia 1995, 51, 153–155. DOI: 10.1007/BF01929360.
  • Dash, S.; Nogata, Y.; Zhou, X.; Zhang, Y.; Xu, Y.; Guo, X.; Zhang, X.; Qian, P.-Y. Poly-Ethers from Winogradskyella Poriferorum: Antifouling Potential, Time-Course Study of Production and Natural Abundance. Bioresour. Technol. 2011, 102, 7532–7537. DOI: 10.1016/j.biortech.2011.05.034.
  • Aguila-Ramírez, R. N.; Hernández-Guerrero, C. J.; González-Acosta, B.; Id-Daoud, G.; Hewitt, S.; Pope, J.; Hellio, C. Antifouling activity of Symbiotic Bacteria from Sponge Aplysina Gerardogreeni. Int. Biodeterior. Biodegrad. 2014, 90, 64–70. DOI: 10.1016/j.ibiod.2014.02.003.
  • Satheesh, S.; Soniamby, A. R.; Sunjaiy Shankar, C. V.; Mary Josephine Punitha, S. Antifouling Activities of Marine Bacteria Associated with Sponge (Sigmadocia sp.). J. Ocean Univ. China 2012, 11, 354–360. DOI: 10.1007/s11802-012-1927-5.
  • Batista, D.; Costa, R.; Carvalho, A. P.; Batista, W. R.; Rua, C. P. J.; de Oliveira, L.; Leomil, L.; Fróes, A. M.; Thompson, F. L.; Coutinho, R.; Dobretsov, S. Environmental Conditions Affect Activity and Associated Microorganisms of Marine Sponges. Mar. Environ. Res. 2018, 142, 59–68. DOI: 10.1016/j.marenvres.2018.09.020.
  • Webster, N. S.; Taylor, M. W. Marine Sponges and Their Microbial Symbionts: Love and Other Relationships. Environ. Microbiol. 2012, 14, 335–346. DOI: 10.1111/j.1462-2920.2011.02460.x.
  • Anteneh, Y. S.; Yang, Q.; Brown, M. H.; Franco, C. M. M. Antimicrobial Activities of Marine Sponge-Associated Bacteria. Microorganisms 2021, 9, 171. DOI: 10.3390/microorganisms9010171.
  • Abdelmohsen, U. R.; Pimentel-Elardo, S. M.; Hanora, A.; Radwan, M.; Abou-El-Ela, S. H.; Ahmed, S.; Hentschel, U. Isolation, Phylogenetic Analysis and anti-Infective Activity Screening of Marine Sponge-Associated Actinomycetes. Mar. Drugs 2010, 8, 399–412. DOI: 10.3390/md8030399.
  • Anteneh, Y. S.; Yang, Q.; Brown, M. H.; Franco, C. M. M. Factors affecting the Isolation and Diversity of Marine Sponge-Associated Bacteria. Appl. Microbiol. Biotechnol. 2022, 106, 1729–1744. DOI: 10.1007/s00253-022-11791-8.
  • Paul, S. I.; Rahman, M. M.; Salam, M. A.; Khan, M. A. R., Islam, M. T. Identification of Marine Sponge-Associated Bacteria of the Saint Martin’s Island of the Bay of Bengal Emphasizing on the Prevention of Motile Aeromonas Septicemia in Labeo Rohita. Aquaculture 2021, 545, 737156. DOI: 10.1016/j.aquaculture.2021.737156.
  • Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Seghal Kiran, G.; Rajeetha Ravji, T.; Natarajaseenivasan, K.; Hema, T. A. Optimization and Production of Novel Antimicrobial Agents from Sponge Associated Marine Actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435–445. DOI: 10.1007/s00253-009-1878-y.
  • Lieske, E.; Fiedler, K. E.; Myers, R. F. Coral reef Guide: Red Sea to Gulf of Aden, South Oman;[The Definitive Guide to over 1200 Species of Underwater Life]; Collins; New York, NY, 2004.
  • Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis Across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. DOI: 10.1093/molbev/msy096..
  • Ortega-Morales, B. O.; Chan-Bacab, M. J.; Miranda-Tello, E.; Fardeau, M.-L.; Carrero, J. C.; Stein, T. Antifouling Activity of Sessile Bacilli Derived from Marine Surfaces. J. Ind. Microbiol. Biotechnol. 2008, 35, 9–15. DOI: 10.1007/s10295-007-0260-2.
  • Nadeem, M. S.; Razeeth, M.; Choudhry, H. M. Z.; Anwar, F.; Zamzami, M. A.; Murtaza, B. N.; Al-Abbasi, F. A. M.; Khan, M. I.; Shakoori, A. R. LC-MS/MS-Based Metabolic Profiling of Escherichia coli Under Heterologous Gene Expression Stress. J. Cell. Biochem. 2020, 121, 125–134. DOI: 10.1002/jcb.28962.
  • Abdulrahman, I.; Jamal, M. T.; Alshaery, M.; Al-Maaqar, S. M.; Satheesh, S. Isolation and Identification of Biofilm Bacteria from Microfouling Assemblage Developed on Artificial Materials Submerged in the Red Sea. JKAU: Mar. Sci. 2021, 31, 45–54. DOI: 10.4197/Mar.31-2.4.
  • Haney, E. F.; Trimble, M. J.; Cheng, J. T.; Vallé, Q.; Hancock, R. E. W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. DOI: 10.3390/biom8020029.
  • O’Toole, G. A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, 2437. DOI: 10.3791/2437.
  • Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B. O.; Al-Sodany, Y. Antibacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils against Escherichia coli Isolated from UTI Patients. Molecules 2019, 24, 1161. DOI: 10.3390/molecules24061161.
  • Khalifa, R. A.; Nasser, M. S.; Gomaa, A. A.; Osman, N. M.; Salem, H. M. Resazurin Microtiter Assay Plate Method for Detection of Susceptibility of Multidrug Resistant Mycobacterium tuberculosis to Second-Line Anti-Tuberculous Drugs. Egypt. J. Chest Dis. Tubercul. 2013, 62, 241–247. DOI: 10.1016/j.ejcdt.2013.05.008.
  • Wikler, M. A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard. Clsi (Nccls) 2006, 26, M7–A7.
  • Pugazhendi, A.; Abbad Wazin, H.; Qari, H.; Basahi, J. M. A.; B.;Godon, J. J.; Dhavamani, J. Biodegradation of Low and High Molecular Weight Hydrocarbons in Petroleum Refinery Wastewater by a Thermophilic Bacterial Consortium. Environ. Technol. 2017, 38, 2381–2391. DOI: 10.1080/09593330.2016.1262460.
  • Bannister, J.; Sievers, M.; Bush, F.; Bloecher, N. Biofouling in Marine Aquaculture: A Review of Recent Research and Developments. Biofouling 2019, 35, 631–648. DOI: 10.1080/08927014.2019.1640214.
  • Togashi, N.; Shiraishi, A.; Nishizaka, M.; Matsuoka, K.; Endo, K.; Hamashima, H.; Inoue, Y. Antibacterial Activity of Long-Chain Fatty Alcohols against Staphylococcus aureus. Molecules 2007, 12, 139–148. DOI: 10.3390/12020139.
  • Moreira, I. C.; Roque, N. F.; Vilegas, W.; Zalewski, C. A.; Lago, J. H. G.; Funasaki, M. Genus Xylopia (Annonaceae): Chemical and Biological Aspects. Chem. Biodivers.. 2013, 10, 1921–1943. DOI: 10.1002/cbdv.201100308.
  • Kim, G.; Kim, J. E.; Kang, M. J.; Jang, A. R.; Kim, Y. R.; Kim, S.; Chang, K. T.; Hong, J. J.; Park, J. H. Inhibitory Effect of 1‑Tetradecanol on Helicobacter pylori‑Induced Production of Interleukin‑8 and Vascular Endothelial Growth Factor in Gastric Epithelial Cells. Mol. Med. Rep. 2017, 16, 9573–9578. DOI: 10.3892/mmr.2017.7793.
  • Bahreldin, M.; Nouraldein Mohammed Hamad, M. GC-MS Analysis, Antimicrobial and Antioxidant Activity of Sudanes Adansoina Digitata L; (Malvaceae) Fixed Oil. Saudi J. Med. Pharm. Sci. 2020, 6, 535–540. DOI: 10.36348/sjmps.2020.v06i08.004.
  • Paudel, M. R.; Chand, M. B.; Pant, B.; Pant, B. Assessment of Antioxidant and Cytotoxic Activities of Extracts of Dendrobium Crepidatum. Biomolecules 2019, 9, 478. DOI: 10.3390/biom9090478.
  • Safara, S.; Harighi, B.; Bahramnejad, B.; Ahmadi, S. Antibacterial Activity of Endophytic Bacteria against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. Front. Microbiol. 2022, 13, 921762. DOI: 10.3389/fmicb.2022.921762.
  • Santana, P. I. M.; Osorio, M. S.; Sterner, O.; Garcìa, E. L. P. Phytochemical Studies of Fractions and Compounds Present in Vernonanthura Patens with Antifungal Bioactivity and Potential as Antineoplastic. In Phytochemicals-A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed. Citeseer: Princeton, NJ, 2012; pp 503–513.
  • Beema Shafreen, R. M.; Seema, S.; Alagu Lakshmi, S.; Srivathsan, A.; Tamilmuhilan, K.; Shrestha, A.; Balasubramanian, B.; Dhandapani, R.; Paramasivam, R.; Al Obaid, S.; et al. In Vitro and in Vivo Antibiofilm Potential of Eicosane against Candida albicans. Appl. Biochem. Biotechnol. 2022, 194, 4800–4816. DOI: 10.1007/s12010-022-03984-8.
  • Shaaban, M. T.; Ghaly, M. F.; Fahmi, S. M. Antibacterial Activities of Hexadecanoic Acid Methyl Ester and Green-Synthesized Silver Nanoparticles against Multidrug-Resistant Bacteria. J. Basic Microbiol. 2021, 61, 557–568. DOI: 10.1002/jobm.202100061.
  • Ralte, L.; Khiangte, L.; Thangjam, N. M.; Kumar, A.; Singh, Y. T. GC–MS and Molecular Docking Analyses of Phytochemicals from the Underutilized Plant, Parkia Timoriana Revealed Candidate anti-Cancerous and anti-Inflammatory Agents. Sci. Rep. 2022, 12, 3395. DOI: 10.1038/s41598-022-07320-2.
  • Koch, C.; Nordzieke, S.; Grieger, J.; Bugdahn, N.; Genrich, F.; Lange, S. Antimicrobial Activity of Fatty Acid Esters and Combinations Thereof. Google Patents; 2022.
  • Huang, C. B.; George, B.; Ebersole, J. L. Antimicrobial Activity of n-6, n-7 and n-9 Fatty Acids and Their Esters for Oral Microorganisms. Arch. Oral Biol. 2010, 55, 555–560. DOI: 10.1016/j.archoralbio.2010.05.009.
  • Galdiero, E.; Ricciardelli, A.; D'Angelo, C.; de Alteriis, E.; Maione, A.; Albarano, L.; Casillo, A.; Corsaro, M. M.; Tutino, M. L.; Parrilli, E. Pentadecanoic Acid against Candida albicans-Klebsiella pneumoniae Biofilm: Towards the Development of an Anti-Biofilm Coating to Prevent Polymicrobial Infections. Res. Microbiol. 2021, 172, 103880. DOI: 10.1016/j.resmic.2021.103880.
  • Aissaoui, N.; Mahjoubi, M.; Nas, F.; Mghirbi, O.; Arab, M.; Souissi, Y.; Hoceini, A.; Masmoudi, A. S.; Mosbah, A.; Cherif, A.; Klouche-Khelil, N. Antibacterial Potential of 2,4-Di-tert-Butylphenol and Calixarene-Based Prodrugs from Thermophilic Bacillus licheniformis Isolated in Algerian Hot Spring. Geomicrobiol. J 2019, 36, 53–62. DOI: 10.1080/01490451.2018.1503377.
  • Kiran, G. S.; Priyadharsini, S.; Sajayan, A.; Ravindran, A.; Selvin, J. An Antibiotic Agent Pyrrolo[1,2-a]Pyrazine-1,4-Dione,Hexahydro Isolated from a Marine Bacteria Bacillus tequilensis MSI45 Effectively Controls Multi-Drug Resistant Staphylococcus aureus. RSC Adv. 2018, 8, 17837–17846. DOI: 10.1039/C8RA00820E.
  • Sharma, M.; Mallubhotla, S. Diversity, Antimicrobial Activity, and Antibiotic Susceptibility Pattern of Endophytic Bacteria Sourced from Cordia Dichotoma L. Front. Microbiol. 2022, 13, 879386. DOI: 10.3389/fmicb.2022.879386.
  • Anand, T. P.; Bhat, A. W.; Shouche, Y. S.; Roy, U.; Siddharth, J.; Sarma, S. P. Antimicrobial Activity of Marine Bacteria Associated with Sponges from the Waters off the Coast of South East India. Microbiol. Res 2006, 161, 252–262. DOI: 10.1016/j.micres.2005.09.002.
  • Dat, T. T. H.; Steinert, G.; Cuc, N. T. K.; Smidt, H.; Sipkema, D. Bacteria Cultivated from Sponges and Bacteria Not yet Cultivated from Sponges—A Review. Front. Microbiol. 2021, 12, 737925. DOI: 10.3389/fmicb.2021.737925.
  • Carroll, A. R.; Copp, B. R.; Davis, R. A.; Keyzers, R. A.; Prinsep, M. R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. DOI: 10.1039/D0NP00089B.
  • Kiesewalter, H. T.; Lozano-Andrade, C. N.; Wibowo, M.; Strube, M. L.; Maróti, G.; Snyder, D.; Jørgensen, T. S.; Larsen, T. O.; Cooper, V. S.; Weber, T.; et al. Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. mSystems 2021, 6, e00770-20. DOI: 10.1128/mSystems.00770-20.
  • Kai, M. Diversity and Distribution of Volatile Secondary Metabolites throughout Bacillus subtilis Isolates. Front. Microbiol. 2020, 11, 559. DOI: 10.3389/fmicb.2020.00559.
  • Muscholl-Silberhorn, A.; Thiel, V.; Imhoff, J. F. Abundance and Bioactivity of Cultured Sponge-Associated Bacteria from the Mediterranean Sea. Microb. Ecol. 2008, 55, 94–106. DOI: 10.1007/s00248-007-9255-9.
  • Dash, S.; Jin, C.; Lee, O. O.; Xu, Y.; Qian, P.-Y. Antibacterial and Antilarval-Settlement Potential and Metabolite Profiles of Novel Sponge-Associated Marine Bacteria. J. Ind. Microbiol. Biotechnol. 2009, 36, 1047–1056. DOI: 10.1007/s10295-009-0588-x.
  • Kim, S. K.; Dewapriya, P. Bioactive Compounds from Marine Sponges and Their Symbiotic Microbes: A Potential Source of Nutraceuticals. Adv. Food Nutr. Res. 2012, 65, 137–151. DOI: 10.1016/b978-0-12-416003-3.00008-1.
  • Gopi, M.; Kumaran, S.; Kumar, T. T. A.; Deivasigamani, B.; Alagappan, K.; Prasad, S. G. Antibacterial Potential of Sponge Endosymbiont Marine Enterobacter sp at Kavaratti Island, Lakshadweep Archipelago. Asian Pac. J. Trop. Med. 2012, 5, 142–146. DOI: 10.1016/S1995-7645(12)60013-3.
  • Iyer, A.; Mody, K.; Jha, B. Characterization of an Exopolysaccharide Produced by a Marine Enterobacter cloacae. Indian J. Exp. Biol. 2005, 43, 467–471.
  • Almutairi, M. H.; Helal, M. M. I. Exopolysaccharide Production from Isolated Enterobacter sp. strain ACD2 from the Northwest of Saudi Arabia. J. KS Univ. Sci. 2021, 33, 101318. DOI: 10.1016/j.jksus.2020.101318.
  • Okazaki, T.; Kitahara, T.; Okami, Y. Studies on Marine Microorganisms. IV. A New Antibiotic SS-228 Y Produced by Chainia Isolated from Shallow Sea Mud. J Antibiot (Tokyo) 1975, 28, 176–184. DOI: 10.7164/antibiotics.28.176.
  • Pita, L.; Rix, L.; Slaby, B. M.; Franke, A.; Hentschel, U. The Sponge Holobiont in a Changing Ocean: From Microbes to Ecosystems. Microbiome 2018, 6, 46. DOI: 10.1186/s40168-018-0428-1.
  • De Caterina, R.; Madonna, R. Nutrients and Gene Expression. World Rev. Nutr. Diet. 2004, 93, 99–133. DOI: 10.1159/000081255.
  • Joint, I.; Mühling, M.; Querellou, J. Culturing Marine Bacteria–an Essential Prerequisite for Biodiscovery. Microb. Biotechnol. 2010, 3, 564–575. DOI: 10.1111/j.1751-7915.2010.00188.x.
  • de Carvalho, C. C. C. R.; Fernandes, P. Production of Metabolites as Bacterial Responses to the Marine Environment. Mar. Drugs. 2010, 8, 705–727. DOI: 10.3390/md8030705.
  • Danquah, C. A.; Minkah, P. A. B.; Agana, T. A.; Moyo, P.; Tetteh, M.; Junior, I. O. D.; Amankwah, K. B.; Somuah, S. O.; Ofori, M.; Maharaj, V. J. Natural Products as Antibiofilm Agents. Intechopen: London, 2022. DOI: 10.5772/intechopen.104434.
  • Wang, K.-L.; Dou, Z.-R.; Gong, G.-F.; Li, H.-F.; Jiang, B.; Xu, Y. Anti-Larval and anti-Algal Natural Products from Marine Microorganisms as Sources of anti-Biofilm Agents. Mar. Drugs 2022, 20, 90. DOI: 10.3390/md20020090.
  • Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing Natural Products as Potential anti-Biofilm Agents. Chin. Med. 2019, 14, 11. DOI: 10.1186/s13020-019-0232-2.
  • Li, Y.; Li, Q.; Hao, D.; Jiang, D.; Luo, Y.; Liu, Y.; Zhao, Z. Production, Purification, and Antibiofilm Activity of a Novel Exopolysaccharide from Arthrobacter sp. B4. Prep. Biochem. Biotechnol. 2015, 45, 192–204. DOI: 10.1080/10826068.2014.907180.
  • Sayem, S. M. A.; Manzo, E.; Ciavatta, L.; Tramice, A.; Cordone, A.; Zanfardino, A.; De Felice, M.; Varcamonti, M. Anti-Biofilm Activity of an Exopolysaccharide from a Sponge-Associated Strain of Bacillus licheniformis. Microb. Cell Fact. 2011, 10, 74. DOI: 10.1186/1475-2859-10-74.
  • Wagner, E. M.; Fischel, K.; Rammer, N.; Beer, C.; Palmetzhofer, A. L.; Conrady, B.; Roch, F.-F.; Hanson, B. T.; Wagner, M.; Rychli, K. Bacteria of Eleven Different Species Isolated from Biofilms in a Meat Processing Environment Have Diverse Biofilm Forming Abilities. Int. J. Food Microbiol. 2021, 349, 109232. DOI: 10.1016/j.ijfoodmicro.2021.109232.
  • Berne, C.; Ducret, A.; Hardy, G. G.; Brun, Y. V. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol Spectr 2015, 4. DOI: 10.1128/microbiolspec.MB-0018-2015.
  • Alviz-Gazitua, P.; González, A.; Lee, M. R.; Aranda, C. P. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas Spp. Mar Biotechnol (NY) 2022, 24, 431–447. DOI: 10.1007/s10126-022-10097-0.
  • Zeng, Z.; Zhan, W.; Wang, W.; Wang, P.; Tang, K.; Wang, X. Biofilm Formation in Pseudoalteromonas lipolytica is Related to IS5-like Insertions in the Capsular Polysaccharide Operon. FEMS Microbiol. Ecol. 2019, 95, fiz065. DOI: 10.1093/femsec/fiz065.
  • Kumar, P.; Lee, J. H.; Beyenal, H.; Lee, J. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol. 2020, 28, 753–768. DOI: 10.1016/j.tim.2020.03.014.
  • Khadke, S. K.; Lee, J. H.; Kim, Y. G.; Raj, V.; Lee, J. Assessment of Antibiofilm Potencies of Nervonic and Oleic Acid against Acinetobacter baumannii Using in Vitro and Computational Approaches. Biomedicines 2021, 9, 1133. DOI: 10.3390/biomedicines9091133.
  • Rashid, Z.; Ali, A.; Douzenel, P.; Bourgougnon, N.; Shaari, K.; Andriani, Y.; Tengku Muhammad, T.; Mohamad, H. Phenolics, Fatty Acids Composition and Biological Activities of Various Extracts and Fractions of Malaysian Aaptos Aaptos [Basic Research]. Asian Pac. J. Trop. Biomed. 2018, 8, 554–564. DOI: 10.4103/2221-1691.245971.
  • Peres, R. S.; Baldissera, A. F.; Armelin, E.; Alemán, C.; Ferreira, C. A. Marine-Friendly Antifouling Coating Based on the Use of a Fatty Acid Derivative as a Pigment. Mat. Res. 2014, 17, 720–727. DOI: 10.1590/S1516-14392014005000032.
  • Santhakumari, S.; Nilofernisha, N. M.; Ponraj, J. G.; Pandian, S. K.; Ravi, A. V. In Vitro and in Vivo Exploration of Palmitic Acid from Synechococcus elongatus as an Antibiofilm Agent on the Survival of Artemia Franciscana against Virulent Vibrios. J. Invertebr. Pathol. 2017, 150, 21–31. DOI: 10.1016/j.jip.2017.09.001.
  • Lemfack, M. C.; Gohlke, B. O.; Toguem, S. M. T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A Database of Microbial Volatiles. Nucleic Acids Res. 2018, 46, D1261–D1265. DOI: 10.1093/nar/gkx1016.
  • Sheoran, N.; Valiya Nadakkakath, A.; Munjal, V.; Kundu, A.; Subaharan, K.; Venugopal, V.; Rajamma, S.; Eapen, S. J.; Kumar, A. Genetic Analysis of Plant Endophytic Pseudomonas putida BP25 and Chemo-Profiling of Its Antimicrobial Volatile Organic Compounds. Microbiol. Res. 2015, 173, 66–78. DOI: 10.1016/j.micres.2015.02.001.
  • Pelyuntha, W.; Chaiyasut, C.; Kantachote, D.; Sirilun, S. Organic Acids and 2,4-Di-Tert-Butylphenol: major Compounds of Weissella confusa WM36 Cell-Free Supernatant against Growth, Survival and Virulence of Salmonella Typhi. PeerJ 2020, 8, e8410. DOI: 10.7717/peerj.8410.
  • Padmavathi, A. R.; Abinaya, B.; Pandian, S. K. Phenol, 2,4-Bis(1,1-Dimethylethyl) of Marine Bacterial Origin Inhibits Quorum Sensing Mediated Biofilm Formation in the Uropathogen Serratia marcescens. Biofouling 2014, 30, 1111–1122. DOI: 10.1080/08927014.2014.972386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.