307
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural alteration of cocoa bean shell fibers through biological treatment using Penicillium roqueforti

, , , , , , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all

References

  • Castoldi, R.; Bracht, A.; Morais, G. R.; Baesso, M. L.; Correa, R. C. G.; Peralta, R. A.; Moreira, R.; Polizeli, M.; Souza, C. G. M.; Peralta, R. M. Biological Pretreatment of Eucalyptus Grandis Sawdust with White-Rot Fungi: Study of Degradation Patterns and Saccharification Kinetics. Chem. Eng. J. 2014, 258, 240–246. DOI: 10.1016/j.cej.2014.07.090.
  • Shirkavand, E.; Baroutian, S.; Gapes, D. J.; Young, B. R. Combination of Fungal and Physicochemical Processes for Lignocellulosic Biomass Pretreatment – A Review. Renew. Sust. Energ. Rev.  2016, 54, 217–234. DOI: 10.1016/j.rser.2015.10.003.
  • Madadi, M.; Abbas, A. Lignin Degradation by Fungal Pretreatment: A Review. J. Plant Pathol. Microbiol. 2017, 8, 1–6. DOI: 10.4172/2157-7471.1000398.
  • Santos, T. C.; Reis, N. S.; Silva, T. P.; Bonomo, R. C. F.; Aguiar-Oliveira, E.; Oliveira, J. R.; Franco M. Production, Optimisation and Partial Characterisation of Enzymes from Filamentous Fungi Using Dried Forage Cactus Pear as Substrate. Waste Biomass. Valor. 2018, 9, 571–579. DOI: 10.1007/s12649-016-9810-z.
  • Santos, T. C.; Diniz, G. A.; Brito, A. R. D.; Pires, A. J. V.; Franco, M. Effect of Solid State Fermentation on Nutritional Content and Evaluation of Degradability in Cactus Pear. Rev. Caatinga 2015, 28, 248–254. DOI: 10.1590/1983-21252015v28n328rc.
  • Rathamat, Z.; Choorit, W.; Chisti, Y.; Prasertsan, P. Two-Step Isolation of Hemicellulose from Oil Palm Empty Fruit Bunch Fibers and Its Use in Production of Xylooligosaccharide Prebiotic. Ind. Crops Prod. 2021, 160, 113124. DOI: 10.1016/j.indcrop.2020.113124.
  • Santana, N. B.; Dias, J. C. T.; Rezende, R. P.; Franco, M.; Oliveira, L. K. S.; Souza, L. O. Production of Xylitol and Bio-Detoxification of Cocoa Pod Husk Hemicellulose Hydrolysate by Candida Boidinii XM02G. PLoS One. 2018, 13, e0195206. DOI: 10.1371/journal.pone.0195206.
  • Manzanares, P. The Role of Biorefinering Research in The Development of A Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. DOI: 10.32933/ActaInnovations.37.4.
  • Abraham, A.; Mathew, A. K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J. H.; Sang, B.-I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. DOI: 10.1016/j.biortech.2019.122725.
  • Mellinas, A. C.; Jiménez, A.; Garrigós, M. C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT-Food Sci. Technol. 2020, 127, 109361. DOI: 10.1016/j.lwt.2020.109361.
  • Vásquez, Z. S.; de Carvalho Neto, D. P.; Pereira, G. V. M.; Vandenberghe, L. P. S.; de Oliveira, P. Z.; Tiburcio, P. B.; Rogez, H. L. G.; Góes Neto, A.; Soccol, C. R. Biotechnological Approaches for Cocoa Waste Management: A Review. Waste Manag. 2019, 90, 72–83. DOI: 10.1016/j.wasman.2019.04.030.
  • Menezes, L. H. S.; Carneiro, L. L.; Tavares, I. M. C.; Santos, P. H.; Chagas, T. P.; Mendes, A. A.; Silva, E. G. P.; Franco, M.; Oliveira, J. R. Artificial Neural Network Hybridized with a Genetic Algorithm for Optimization of Lipase Production from Penicillium Roqueforti ATCC 10110 in Solid-State Fermentation. Biocatal. Agric. Biotechnol. 2021, 31, 101885. DOI: 10.1016/j.bcab.2020.101885.
  • Araujo, S. C.; Ramos, M.; Santo, E. L. E.; Menezes, L. H. S.; Carvalho, M. S.; Tavares, I. M. C.; Franco, M.; Oliveira, J. Optimization of Lipase Production by Penicillium Roqueforti ATCC 10110 Through Solid-State Fermentation Using Agro-Industrial Residue Based on a Univariate Analysis. Prep. Biochem. Biotechnol. 2022, 53, 325–330. DOI: 10.1080/10826068.2021.1944203.
  • Silva, T. P.; Souza, L. O.; Reis, N. S.; Assis, S. A.; Ferreira, M. L. O.; Oliveira, J. R.; Aguiar-Oliveira, E.; Franco, M. Cultivation of Penicillium Roqueforti in Cocoa Shell to Produce and Characterize its Lipase Extract. Rev. Mex. Ing. Quím. 2017, 16, 745–756. https://www.redalyc.org/articulo.oa?id=62053304005.
  • Nogueira, L. S.; Tavares, I. M. C.; Santana, N. B.; Ferrão, S.; Teixeira, P. B.; Costa, J. M.; Silva, F. S.; Pereira, T. P.; Irfan, H. J. V.; Bilal, M.; et al. Thermostable Trypsin-like Protease by Penicillium Roqueforti Secreted in Cocoa Shell Fermentation: Production Optimization, Characterization, and Application in Milk Clotting. Biotechnol. Appl. Biochem. 2022, 69, 2069–2080. DOI: 10.1002/bab.2268.
  • Oliveira, P. C.; de Brito, A. R.; Pimentel, A. B.; Soares, G. A.; Pacheco, C. S. V.; Santana, N. B.; da Silva, E. G. P.; Fernandes, A. G. A.; Ferreira, M. L. O.; Oliveira, J. R.; Franco, M. Cocoa Shell for The Production of Endoglucanase by Penicillium Roqueforti ATCC 10110 in Solid State Fermentation and Biochemical Properties. Rev. Mex. Ing. Quim. 2019, 18, 777–787. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira.
  • Reis, S. N.; Lessa, O. A.; Pacheco, C. S. V.; Pereira, N. E.; Soares, G. A.; Silva, E. G. P.; Oliveira, J. R.; Franco, M. Cocoa Shell As a Substrate for Obtaining Endoglucanase and Xylanase from Aspergillus Oryzae ATCC 10124. Acta Sci. Technol. 2020, 42, e48211. DOI: 10.4025/actascitechnol.v42i1.48211.
  • Lombo Vidal, O.; Tsukui, A.; Garrett, R.; Miguez Rocha-Leão, M. H.; Piler Carvalho, C. W.; Pereira Freitas, S.; Moraes de Rezende, C.; Simões Larraz Ferreira, M. Production of Bioactive Films of Carboxymethyl Cellulose Enriched with Green Coffee Oil and Its Residues. Int. J. Biol. Macromol. 2020, 146, 730–738. DOI: 10.1016/j.ijbiomac.2019.10.123.
  • Prasad, R. K.; Chatterjee, S.; Mazumder, P. B.; Gupta, S. K.; Sharma, S.; Vairale, M. G.; Datta, S.; Dwivedi, S. K.; Gupta, D. K. Bioethanol Production from Waste Lignocelluloses: A Review on Microbial Degradation Potential. Chemosphere 2019, 231, 588–606. DOI: 10.1016/j.chemosphere.2019.05.142.
  • Yadav, M.; Vivekanand, V. Biological Treatment of Lignocellulosic Biomass by Curvularia lunata for Biogas Production. Bioresour. Technol. 2020, 306, 123151. DOI: 10.1016/j.biortech.2020.123151.
  • Marques, G. L.; Silva, T. P.; Lessa, O. A.; de Brito, A. R.; Reis, N. S.; Fernandes, A.; Ferreira, D. A.; Oliveira, M. L. O.; Franco, M. Production of Xylanase and Endoglucanase by Solid-State Fermentation of Jackfruit Residue. Rev. Mex. Ing. Quim 2019, 18, 673–680. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Marques.
  • Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem Eng. J. 2013, 81, 146–161. DOI: 10.1016/j.bej.2013.10.013.
  • Monteiro, G. P.; Tavares, I. M. C.; Carvalho, M. C. F.; Carvalho, M. S.; Pimentel, A. B.; Santos, P. H.; Vilas Boas, E. V. B.; Oliveira, J. R.; Capelossi, V. R.; Bilal, M.; Franco, M. Evaluation of Fungal Biomass Developed from Cocoa By-Product As a Substrate with Corrosion Inhibitor for Carbon Steel. Chem. Eng. Commun. 2022. DOI: 10.1080/00986445.2022.2073228.
  • Carvalho, E. A.; Nunes, L. V.; Goes, L.; Silva, E.; Franco, M.; Gross, E.; Uetanabaro, A. P. T.; Costa, A. M. D. Peach-Palm (Bactris gasipaes Kunth.) Waste as Substrate for Xylanase Production by Trichoderma stromaticum AM7. Chem. Eng. Commun. 2018, 205, 975–985. DOI: 10.1080/00986445.2018.1425208.
  • Ferraz, J.; Souza, L. O.; Fernandes, A. G. A.; Oliveira, M. L. F.; Oliveira, J. R.; Franco, M. Optimization of the Solid-State Fermentation Conditions and Characterization of Xylanase Produced by Penicillium roqueforti ATCC 10110 Using Yellow Mombin Residue (Spondias mombin L.). Chem. Eng. Commun. 2020, 207, 31–42. DOI: 10.1080/00986445.2019.1572000.
  • Nunes, N. S.; Carneiro, L. L.; Menezes, L. H. S.; Carvalho, M. S.; Pimentel, A. B.; Silva, T. P.; Pacheco, C. S. V.; Tavares, I. M. C.; Santos, P. H.; Chagas, T. P.; et al. Simplex-Centroid Design and Artificial Neural Network-Genetic Algorithm for the Optimization of Exoglucanase Production by Penicillium roqueforti ATCC 10110 Through Solid-State Fermentation Using a Blend of Agroindustrial Wastes. Bioenerg. Res. 2020, 13, 1130–1143. DOI: 10.1007/s12155-020-10157-0.
  • Lessa, O. A.; Reis, N. S.; Leite, S. G. F.; Gutarra, M. L. E.; Souza, A. O.; Gualberto, S. A.; Oliveira, J. R.; Aguiar-Oliveira, E.; Franco, M. Effect of the Solid State Fermentation of Cocoa Shell on the Secondary Metabolites, Antioxidant Activity, and Fatty Acids. Food Sci. Biotechnol. 2018, 27, 107–113. DOI: 10.1007/s10068-017-0196-x.
  • Postigo, L. O. C.; Jacobo-Velázquez, D. A.; Guajardo-Flores, D.; Amezquita, L. E. G.; García-Cayuela, T. Solid-State Fermentation for Enhancing the Nutraceutical Content of Agrifood By-Products: Recent Advances and Its Industrial Feasibility. Food Biosci. 2021, 41, 100926. DOI: 10.1016/j.fbio.2021.100926.
  • Yazid, N. A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. DOI: 10.3390/su9020224.
  • Neves, C.; Menezes, L. H. S.; Soares, G. A.; Reis, N. S.; Tavares, I. M. C.; Franco, M.; Oliveira, J. R. Production and Biochemical Characterization of Halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 Grown in Forage Palm Under Solid-State Fermentation. Biomass Convers. Biorefinery 2020, 12, 3133–3144. DOI: 10.1007/s13399-020-00930-8.
  • Silveira, M. H. L.; Morais, A. R. C.; Da Costa Lopes, A. M.; Olekszyszen, D. N.; Bogel-Łukasik, R.; Andreaus, J.; Pereira Ramos, L. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries. Chem. Sus. Chem. 2015, 8, 3366–3390. DOI: 10.1002/cssc.201500282.
  • Kochepka, D. M.; Dill, L. P.; Fockink, D. H.; Łukasik, R. M. Contribution To The Production and Use of Biomass-Derived Solvents—A Review. Acta Innov. 2020, 35, 29–56. DOI: 10.32933/ActaInnovations.35.3.
  • Tiwari, R.; Rana, S.; Singh, S.; Arora, A.; Kaushik, R.; Agrawal, V. V.; Saxena, A. K.; Nain, L. Biological Delignification of Paddy Straw and Parthenium Sp. using a Novel Micromycete Myrothecium roridum LG7 for Enhanced Saccharification. Bioresour. Technol. 2013, 135, 7–11. DOI: 10.1016/j.biortech.2012.12.079.
  • Xu, G.; Wang, L.; Liub, J.; Wu, J. FTIR and XPS Analysis of The Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. Appl. Surf. Sci. 2013, 280, 799–805. DOI: 10.1016/j.apsusc.2013.05.065.
  • Zhang, X.; Yu, H.; Huang, H.; Liu, Y. Evaluation of Biological Pretreatment with White Rot Fungi for the Enzymatic Hydrolysis of Bamboo Culms. Int. Biodeterior. Biodegradation 2007, 60, 159–164. DOI: 10.1016/j.ibiod.2007.02.003.
  • Sun, F.; Li, J.; Yuan, Y.; Yan, Z.; Liu, X. Effect of Biological Pretreatment with Trametes hirsuta yj9 on Enzymatic Hydrolysis of Corn Stover. Int. Biodeterior. Biodegradation 2011, 65, 931–938. DOI: 10.1016/j.ibiod.2011.07.001.
  • Santana, M. B. M.; Pereira, G. C.; Morais, F. I. Métodos de análise de solos, plantas e água utilizados no laboratório do Setor de Fertilidade de Solos do CEPEC. Centro de Pesquisas do Cacau, Ilhéus, 1977.
  • Malavolta, E.; Vitti, C. C.; Oliveira, S. A. Avaliação do estado nutritivo, princípio e aplicação. 2nd ed. Potafos, Piracicaba, 1997.
  • Reis, N. S.; Brito, A. B.; Pacheco, C. S. V.; Costa, L. C. B.; Gross, E.; Santos, T. P.; Costa, A. R.; Silva, E. G. P.; Oliveira, R. A.; Aguiar-Oliveira, E.; et al. Improvement in Menthol Extraction of Fresh Leaves of Mentha arvensis by the Application of Multi-Enzymatic Extract of Aspergillus niger. Chem. Eng. Commun. 2018, 206, 387–397. DOI: 10.1080/00986445.2018.1494580.
  • French, A. D. Idealized Powder Diffraction Patterns for Cellulose Polymorphs. Cellulose 2014, 21, 885–889. DOI: 10.1007/s10570-013-0030-4.
  • Pandey, A.; Selvakumar, P.; Soccol, C. R.; Nigam, P. Solid State Fermentation for the Production of Industrial Enzymes. Curr. Sci. 1999, 77, 149–162. http://www.jstor.org/stable/24102923.
  • Mioso, R.; Toledo, M. F. J.; Herrera, B. L. I. Penicillium roqueforti: A Multifunctional Cell Factory of High Value-Added Molecules. J. Appl. Microbiol. 2015, 118, 81–791. DOI: 10.1111/jam.12706.
  • Wan, C.; Li, Y. Fungal Pretreatment of Lignocellulosic Biomass. Biotechnol. Adv. 2012, 30, 1447–1457. DOI: 10.1016/j.biotechadv.2012.03.003.
  • Fioresi, F.; Vieillard, J.; Bargougui, R.; Bouazizi, N.; Fotsing, P. N.; Woumfo, E. D.; Brun, N.; Mofaddel, N.; Derf, F. Chemical Modification of the Cocoa Shell Surface Using Diazonium Salts. J. Colloid Interface Sci. 2017, 494, 92–97. DOI: 10.1016/j.jcis.2017.01.069.
  • Bargougui, A. R.; Bouazizia, N.; Brunb, N.; Nkuigue, F. C. P.; Thoumired, O.; Ladamd, G.; Djoufac Woumfoc, E.; Mofaddela, N.; Le Derfa, F.; Vieillard, A. J. Improvement in CO2 Adsorption Capacity of Cocoa Shell Through Functionalization with Amino Groups and Immobilization of Cobalt Nanoparticles. J. Environ. Chem. Eng. 2018, 6, 325–331. DOI: 10.1016/j.jece.2017.11.079.
  • Almeida, P. F.; Freire, D. M. G.; Lins, U.; Gutarra, M. E. L. Surface Imaging of the Filamentous Fungus Penicillium simplicissimum Growing in a Solid-State Fermentation System. Micron 2017, 99, 19–25. DOI: 10.1016/j.micron.2017.04.001.
  • Hölker, U.; Lenz, J. Solid-State Fermentation-Are There Any Biotechnological Advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. DOI: 10.1016/j.mib.2005.04.006.
  • Gutarra, M. L. E.; Godoy, M. G.; Maugeri, F.; Rodrigues, M. I.; Freire, D. M. G.; Castilho, L. R. Production of an Acidic and Thermostable Lipase of the Mesophilic Fungus Penicillium Simplicissimum by Solid-State Fermentation. Bioresour. Technol. 2009, 100, 5249–5254. DOI: 10.1016/j.biortech.2008.08.050.
  • Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Osterberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindström, T. Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 2007, 8, 1934–1941. DOI: 10.1021/bm061215p.
  • Baramee, S.; Siriatcharanon, A.; Ketbot, P.; Teeravivattanakit, T.; Waeonukul, R.; Pason, P.; Tachaapaikoon, C.; Ratanakhanokchai, K.; Phitsuwan, P. Biological Pretreatment of Rice Straw with Cellulase-Free Xylanolytic Enzyme-Producing Bacillus firmus K-1: Structural Modification and Biomass Digestibility. Renew. Energy 2020, 160, 555–563. DOI: 10.1016/j.renene.2020.06.061.
  • Ghorbani, F.; Karimi, M.; Biria, D.; Kariminia, H. R.; Jeihanipour, A. Enhancement of Fungal Delignification of Rice Straw by Trichoderma viride sp. to Improve Its Saccharification. Biochem. Eng. J. 2015, 101, 77–84. DOI: 10.1016/j.bej.2015.05.005.
  • Taha, M.; Shahsavari, E.; Al-Hothaly, K.; Mouradov, A.; Smith, A. T.; Ball, A. S.; Adetutu, E. M. Enhanced Biological Straw Saccharification Through Coculturing of Lignocellulose-Degrading Microorganisms. Appl. Biochem. Biotechnol. 2015, 175, 3709–3728. DOI: 10.1007/s12010-015-1539-9.
  • Song, L.; Yu, H.; Ma, F.; Zhang, X. Biological Pretreatment under Non-sterile Conditions for Enzymatic Hydrolysis of Corn Stover. Bioresour 2013, 8, 3802–3816.
  • Hassana, S.M.A.M; Ishakb, M. A. M.; Ismaila, K.; Ali, S. N.; Yusop, M. F. Comparison Study of Rubber Seed Shell and Kernel (Hevea Brasiliensis) as Raw Material for Bio-oil Production. Energy Procedia 2014, 52, 610–617. DOI: 10.1016/j.egypro.2014.07.116.
  • Wang, S.; Wang, X.; Liu, W.; Zhang, L.; Ouyang, H.; Hou, Q.; Fan, K.; Li, J.; Liu, P.; Liu, X. Fabricating Cellulose Nanofibril from Licorice Residues and Its Cellulose Composite Incorporated With Natural Nanoparticles. Carbohydr. Polym. 2020, 229, 115464. DOI: 10.1016/j.carbpol.2019.115464.
  • Saelee, K.; Yingkamhaeng, N.; Nimchua, T.; Sukyai, P. An Environmentally Friendly Xylanase-Assisted Pretreatment for Cellulose Nanofibrils Isolation from Sugarcane Bagasse by High-Pressure Homogenization. Ind. Crops Prod. 2016, 82, 149–160. DOI: 10.1016/j.indcrop.2015.11.064.
  • Moharir, A. V.; KIekens, P. Cellulose Crystallite Sizes in Diploid and Tetraploid Native Cotton. J. Appl. Polym. Sci. 1998, 68, 2107–2112. DOI: 10.1002/(SICI)10974628(19980627).68:13<2107::AID-APP6>3.0.CO;2-G
  • Chandra, J.; George, N.; Narayanankutty, S. K. Isolation and Characterization of Cellulose Nanofibrils from Arecanut Husk Fibre. Carbohydr. Polym. 2016, 142, 158–166. DOI: 10.1016/j.carbpol.2016.01.015.
  • Khawas, P, Deka, S. C. Isolation and Characterization of Cellulose Nanofibers from Culinary Banana Peel Using High-Intensity Ultrasonication Combined with Chemical Treatment. Carbohydr. Polym. 2016, 137, 608–616. DOI: 10.1016/j.carbpol.2015.11.020.
  • Sun, X. F.; Xu, F.; Sun, R. C.; Fowler, P.; Baird, M. S. Characteristics of Degraded Cellulose Obtained from Steam-Exploded Wheat Straw. Carbohydr. Res. 2005, 340, 97–106. DOI: 10.1016/j.carres.2004.10.022.
  • Karumuri, S.; Hiziroglu, S.; Kalkan, A. K. Thermoset-Cross-Linked Lignocellulose: A Moldable Plant Biomass. ACS Appl. Mater. Interfaces 2015, 6596–6604. DOI: 10.1021/am508832d.
  • Pandey, K. K.; Theagarajan, K. S.; Eur, J. Analysis of Wood Surfaces and Ground Wood by Diffuse Reflectance (DRIFT) and Photoacoustic (PAS) Fourier Transform Infrared Spectroscopic Techniques. Wood Wood Prod. 1997, 55, 383–390. DOI: 10.1007/s001070050251.
  • Barbosa, L. Espectroscopia no Infravermelho. 1st ed.; Editora UFV, Viçosa, 2007.
  • Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. Identificação Espectrométrica de Compostos Orgânicos. 7th ed.; Livro Técnicos e Científico. Rio de Janeiro, 2006.
  • Oliveira, A. C. D.; Frensch, G.; Marques, F. A.; Vargas, J. V. C.; Rodrigues, M. L. F.; Mariano, A. B. Production of Methyl Oleate by Direct Addition of Fermented Solid Penicillium sumatrense and Aspergillus fumigatus. Renew. Energy 2020, 162, 1132–1139. DOI: 10.1016/j.renene.2020.08.117.
  • Zeng, G.; Cheng, M.; Huang, D.; Lai, C.; Xu, P.; Wei, Z.; Li, N.; Zhang, C.; He, X.; He, Y. Study of the Degradation of Methylene Blue by Semi-Solid-State Fermentation of Agricultural Residues with Phanerochaete chrysosporium and Reutilization of Fermented Residues. Waste Manag. 2015, 38, 424–430. DOI: 10.1016/j.wasman.2015.01.012.
  • Deepa, B.; Abraham, E.; Cordeiro, N.; Mozetic, M.; Mathew, A. P.; Oksman, K.; Thomas, M. F. S.; Pothan, L. A. Utilization of Various Lignocellulosic Biomass for the Production of Nanocellulose: A Comparative Study. Cellulose 2015, 22, 1075–1090. DOI: 10.1007/s10570-015-0554-x.
  • Sun, S. N.; Cao, X. F.; Xu, F.; Sun, R. C.; Jones, G. L.; Baird, M. Structure and Thermal Property of Alkaline Hemicelluloses from Steam Exploded Phyllostachys pubescens. Carbohydr. Polym. 2014, 101, 1191–1197. DOI: 10.1016/j.carbpol.2013.09.109.
  • Xu, X.; Xu, Z.; Shi, S.; Lin, M. Lignocellulose Degradation Patterns, Structural Changes, and Enzyme Secretion by Inonotus obliquus on Straw Biomass Under Submerged Fermentation. Bioresour. Technol. 2017, 241, 415–423. DOI: 10.1016/j.biortech.2017.05.087.
  • Martin, A. R.; Mattoso, L. H. C.; Silva, O. Chemical and Structural Characterization of Sisal Fibers from Agave sisalana Variety. Polymers 2009, 19, 40–46. DOI: 10.1590/S0104-14282009000100011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.