122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of antioxidation, regulation of glycolipid metabolism and potential as food additives of exopolysaccharide from Sporidiobolus pararoseus PFY-Z1

, , , , , , & show all

References

  • Gientka, I.; Błażejak, S.; Stasiak-Różańska, L.; Chlebowska-Śmigiel, A. Exopolysaccharides from Yeast: Insight into Optimal Conditions for Biosynthesis, Chemical Composition and Functional Properties-Review. Acta Sci. Pol. Technol. Aliment. 2015, 14, 283–292. DOI: 10.17306/J.AFS.2015.4.29.
  • Saadat, Y. R.; Khosroushahi, A. Y.; Movassaghpour, A. A.; Talebi, M.; Gargari, B. P. Modulatory Role of Exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as Probiotic Yeasts from Dairy Products in Human Colon Cancer Cells. J. Funct. Foods 2020, 64, 1036752. DOI: 10.1016/j.jff.2019.103675.
  • Li, H.; Huang, L.; Zhang, Y.; Yan, Y. Production, Characterization and Immunomodulatory Activity of an Extracellular Polysaccharide from Rhodotorula mucilaginosa YL-1 Isolated from Sea Salt Field. Mar. Drugs 2020, 18, 595. DOI: 10.3390/md18120595.
  • Ragavan, M. L.; Das, N. Optimization of Exopolysaccharide Production by Probiotic Yeast Lipomyces Starkeyi VIT-MN03 Using Response Surface Methodology and Its Applications. Ann. Microbiol. 2019, 69, 515–530. DOI: 10.1007/s13213-019-1440-9.
  • Pavlova, K.; Rusinova-Videva, S.; Kuncheva, M.; Kratchanova, M.; Gocheva, M.; Dimitrova, S. Synthesis and Characterization of an Exopolysaccharide by Antarctic Yeast Strain Cryptococcus Laurentii AL100. Appl. Biochem. Biotechnol. 2011, 163, 1038–1052. DOI: 10.1007/s12010-010-9107-9.
  • Hamidi, M.; Gholipour, A. R.; Delattre, C.; Sesdighi, F.; Seveiri, R. M.; Pasdara, A.; Kheirandish, S.; Pierre, G.; Kozani, P. S.; Kozani, P. S.; et al. Production, Characterization and Biological Activities of Exopolysaccharides from a New Cold-Adapted Yeast: Rhodotorula mucilaginosa sp. GUMS16. Int. J. Biol. Macromol. 2020, 151, 268–277. DOI: 10.1016/j.ijbiomac.2020.02.206.
  • Mohammed, Y. Y. M.; Saad, M. M. G.; Abdelgaleil, S. A. M. Production, Characterization and Bio-Emulsifying Application of Exopolysaccharides from Rhodotorula mucilaginosa YMM19.3. Biotech 2021, 11, 349. DOI: 10.1007/s13205-021-02898-2.
  • Yuan, Y.; Li, C.; Zheng, Q.; Wu, J.; Zhu, K.; Shen, X.; Cao, J. Effect of Simulated Gastrointestinal Digestion In Vitro on the Antioxidant Activity, Molecular Weight and Microstructure of Polysaccharides from a Tropical Sea Cucumber (Holothuria Leucospilota). Food Hydrocolloid 2019, 89, 735–741. DOI: 10.1016/j.foodhyd.2018.11.040.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. DOI: 10.1039/C3FO60702J.
  • Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J. A.; Juana, F.-L. In Vitro Digestion Models Suitable for Foods: Opportunities for New Fields of Application and Challenges. Food Res. Int. 2018, 107, 423–436. DOI: 10.1016/j.foodres.2018.02.055.
  • Hur, S. J.; Lim, B. O.; Decker, E. A.; McClements, D. J. In Vitro Human Digestion Models for Food Applications. Food Chem. 2011, 125, 1–12. DOI: 10.1016/j.foodchem.2010.08.036.
  • Zhu, K.; Yao, S.; Zhang, Y.; Liu, Q.; Xu, F.; Wu, G.; Dong, W.; Tan, L. Effects of In Vitro Saliva, Gastric and Intestinal Digestion on the Chemical Properties, Antioxidant Activity of Polysaccharide from Artocarpus Heterophyllus Lam. (Jackfruit) Pulp. Food Hydrocolloid 2019, 87, 952–959. DOI: 10.1016/j.foodhyd.2018.09.014.
  • Ma, W.-P.; Li, H.-H.; Liu, M.; Liu, H.-B. Effects of Simulated Digestion In Vitro on the Structure and Macrophages Activation of Fucoidan from Sargassum Fusiforme. Carbohyd. Polym. 2021, 272, 118484. DOI: 10.1016/j.carbpol.2021.118484.
  • Wu, D.-T.; Nie, X.-R.; Gan, R.-Y.; Guo, H.; Fu, Y.; Yuan, Q.; Zhang, Q.; Qin, Q. In Vitro Digestion and Fecal Fermentation Behaviors of a Pectic Polysaccharide from Okra (Abelmoschus esculentus) and Its Impacts on Human Gut Microbiota. Food Hydrocolloid 2021b, 114, 106577. DOI: 10.1016/j.foodhyd.2020.106577.
  • Amorim, C.; Silvério, S. C.; Cardoso, B. B.; Alves, J. I.; Pereira, M. A.; Rodrigues, L. R. In Vitro Fermentation of Raffinose to Unravel Its Potential as Prebiotic Ingredient. LWT-Food Sci. Technol. 2020, 126, 109322. DOI: 10.1016/j.lwt.2020.109322.
  • Zhang, X.; Liu, Y.; Chen, X.-Q.; Aweya, J. J.; Cheong, K.-L. Catabolism of Saccharina Japonica Polysaccharides and Oligosaccharides by Human Fecal Microbiota. LWT-Food Sci. Technol. 2020, 130, 109635. DOI: 10.1016/j.lwt.2020.109635.
  • Zhu, Y.; Zhou, J.-M.; Liu, W.; Pi, X.; Zhou, Q.; Li, P.; Zhou, T.; Gu, Q. Effects of Exopolysaccharide from Lactobacillus rhamnosus on Human Gut Microbiota in an In Vitro Fermentation Model. LWT-Food Sci. Technol. 2021, 139, 110524. DOI: 10.1016/j.lwt.2020.110524.
  • Wu, D.-T.; Fu, Y.; Guo, H.; Yuan, Q.; Nie, X.-R.; Wang, S.-P.; Gan, R.-Y. In Vitro Simulated Digestion and Fermentation of Polysaccharides from Loquat Leaves: Dynamic Changes in Physicochemical Properties and Impacts on Human Gut Microbiota. Int. J. Biol. Macromol 2021, 168, 733–742. DOI: 10.1016/j.ijbiomac.2020.11.130.
  • Liu, Z.-Y.; Pei, F.-Y.; Zhu, J.-F.; Xue, D.; Liu, Y.-C.; Liu, D.-S.; Li, H. Production, Characterization and Antioxidant Activity of Exopolysaccharide from Sporidiobolus Pararoseus PFY-Z1. World J. Microb. Biot. 2023, 39, 1–15. DOI: 10.1007/s11274-022-03453-8.
  • Pei, F. Y.; Ma, Y. S.; Chen, X.; Liu, H. Purification and Structural Characterization and Antioxidant Activity of Levan from Bacillus megaterium PFY-147. Int. J. Biol. Macromol. 2020, 161, 1181–1188. DOI: 10.1016/j.ijbiomac.2020.06.140.
  • Du, R.; Xing, H.; Yang, Y.; Jiang, H.; Zhou, Z.; Han, Y. Optimization, Purification and Structural Characterization of a Dextran Produced by L. mesenteroides Isolated from Chinese Sauerkraut. Carbohyd. Polym. 2017, 174, 409–416. DOI: 10.1016/j.carbpol.2017.06.084.
  • Ahmed, Z.; Wang, Y.; Anjum, N.; Ahmad, A.; Khan, S. T. Characterization of Exopolysaccharide Produced by Lactobacillus kefiranofaciens ZW3 Isolated from Tibet Kefir-Part II. Food Hydrocolloid. 2013, 30, 343–350. DOI: 10.1016/j.foodhyd.2012.06.009.
  • Jeddou, K. B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C. B.; Ghorbel, R. E. Structural, Functional, and Antioxidant Properties of Water-Soluble Polysaccharides from Potatoes Peels. Food Chem. 2016, 205, 97–105. DOI: 10.1016/j.foodchem.2016.02.108.
  • Gan, L.; Li, X.; Zhang, H.; Zhang, R.; Wang, H.; Xu, Z.; Peng, B.; Tian, Y. Preparation, Characterization and Functional Properties of a Novel Exopolysaccharide Produced by the Halophilic Strain Halomonas Saliphila LCB169T. Int. J. Biol. Macromol. 2020, 156, 372–380. DOI: 10.1016/j.ijbiomac.2020.04.062.
  • Liu, L.; Xu, J.; Du, R.; Ping, W.; Ge, J.; Zhao, D. The Response Surface Optimization of Exopolysaccharide Produced by Saccharomyces cerevisiae Y3 and Its Partial Characterization. Prep. Biochem. Biotech. 2022, 52, 566–577. DOI: 10.1080/10826068.2021.1972428.
  • Kanamarlapudi, S.; Muddada, S. Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30. Biomed. Res. Int. 2017, 2017, 4201809. DOI: 10.1155/2017/4201809.
  • Asgher, M.; Urooj, Y.; Qamar, S. A.; Khalid, N. Improved Exopolysaccharide Production from Bacillus licheniformis MS3: Optimization and Structural Functional Characterization. Int. J. Biol. Macromol. 2020, 151, 984–992. DOI: 10.1016/j.ijbiomac.2019.11.094.
  • Mathivanan, K.; Chandirika, J. U.; Mathimani, T.; Vinothkanna, A.; Rajaram, R.; Annadurai, G. Optimization, Compositional Analysis, and Characterization of Exopolysaccharides Produced by Multi-Metal Resistant Bacillus cereus KMS3-1. Carbohyd. Polym. 2020, 227, 115369. DOI: 10.1016/j.carbpol.2019.115369.
  • Sathishkumar, R.; Kannan, R.; Jinendiran, S.; Sivakumar, N.; Selvakumar, G.; Shyamkumar, R. Production and Characterization of Exopolysaccharide from the Sponge-Associated Bacillus Subtilis MKU SERB2 and Its In-Vitro Biological Properties. Int. J. Biol. Macromol. 2021, 166, 1471–1479. DOI: 10.1016/j.ijbiomac.2020.11.026.
  • Cao, C.; Li, Y.; Wang, C.; Zhang, N.; Zhu, X.; Wu, R.; Wu, J. Purification, Characterization and Antitumor Activity of an Exopolysaccharide Produced by Bacillus velezensis SN-1. Int. J. Biol. Macromol. 2020, 156, 354–361. DOI: 10.1016/j.ijbiomac.2020.04.024.
  • Sun, L.; Yang, Y.; Lei, P.; Li, S.; Xu, H.; Wang, R.; Qiu, Y. B.; Zhang, W. Structure Characterization, Antioxidant and Emulsifying Capacities of Exopolysaccharide Derived from Pantoea Alhagi NX-11. Carbohyd. Polym. 2021, 261, 117872. DOI: 10.1016/j.carbpol.2021.117872.
  • Li, X.; Wei, Z.; Wang, X.; Duan, F.; Xiong, L.; Li, J.; Tian, J.; Jia, L.; Gao, H. Premna microphylla Turcz Leaf Pectin Exhibited Antioxidant and Anti-Inflammatory Activities in LPS-Stimulated RAW 264.7 Macrophages. Food Chem. 2021, 349, 129164. DOI: 10.1016/j.foodchem.2021.129164.
  • Ayyash, M.; Abu-Jdayil, B.; Olaimat, A.; Esposito, G.; Itsaranuwat, P.; Osaili, T.; Obaid, R.; Kizhakkayil, J.; Liu, S.-Q. Physicochemical, Bioactive and Rheological Properties of an Exopolysaccharide Produced by a Probiotic Pediococcus pentosaceus M41. Carbohyd. Polym. 2020, 229, 115462. DOI: 10.1016/j.carbpol.2019.115462.
  • Li, S.; Xia, H.; Xie, A.; Wang, Z.; Ling, K.; Zhang, Q.; Zou, X. Structure of a Fucose-Rich Polysaccharide Derived from EPS Produced by Kosakonia sp. CCTCC M2018092 and Its Application in Antibacterialfilm. Int. J. Biol. Macromol. 2020, 159, 295–303. DOI: 10.1016/j.ijbiomac.2020.05.029.
  • Wang, C.; Yu, Y.-B.; Chen, T.-T.; Wang, Z.-W.; Yan, J.-K. Innovative Preparation, Physicochemical Characteristics and Functional Properties of Bioactive Polysaccharides from Fresh Okra (Abelmoschus esculentus (L.) Moench). Food Chem. 2020, 320, 126647. DOI: 10.1016/j.foodchem.2020.126647.
  • Gu, S.-S.; Sun, H.-Q.; Zhang, X.-L.; Huang, F.-N.; Pan, L.-C.; Zhu, Z.-Y. Structural Characterization and Inhibitions on α-Glucosidase and α-Amylase of Alkali-Extracted Water-Soluble Polysaccharide from Annona Squamosa Residue. Int. J. Biol. Macromol. 2021, 166, 730–740. DOI: 10.1016/j.ijbiomac.2020.10.230.
  • Qin, H.; Huang, L.; Teng, J.; Wei, B.; Xia, N.; Ye, Y. Purification, Characterization, and Bioactivity of Liupao Tea Polysaccharides Before and after Fermentation. Food Chem. 2021, 353, 129419. DOI: 10.1016/j.foodchem.2021.129419.
  • Pei, F.; Cao, X.; Wang, X.; Ren, Y.; Ge, J. Structural Characteristics and Bioactivities of Polysaccharides from Blue Honeysuckle After Probiotic Fermentation. LWT-Food Sci. Technol. 2022, 165, 113764. DOI: 10.1016/j.lwt.2022.113764.
  • Pei, F.; Lv, Y.; Cao, X.; Wang, X.; Ren, Y.; Ge, J. Structural Characteristics and the Antioxidant and Hypoglycemic Activities of a Polysaccharide from Lonicera caerulea L. Pomace. Fermentation 2022, 8, 422. DOI: 10.3390/fermentation8090422.
  • Yan, J.-K.; Wu, L.-X.; Qiao, Z.-R.; Cai, W.-D.; Ma, H. Effect of Different Drying Methods on the Product Quality and Bioactive Polysaccharides of Bitter Gourd (Momordica charantia L.) Slices. Food Chem. 2019, 271, 588–596. DOI: 10.1016/j.foodchem.2018.08.012.
  • Xiao, Y.; Huang, Q.; Zheng, Z.; Ma, H. Selenium Release Kinetics and Mechanism from Cordyceps sinensis Exopolysaccharide-Selenium Composite Nanoparticles in Simulated Gastrointestinal Conditions. Food Chem. 2021, 350, 129223. DOI: 10.1016/j.foodchem.2021.129223.
  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Wang, C.; Santhanam, R. K.; Gao, X.; Chen, Z.; Chen, Y.; Wang, C.; Xu, L.; Chen, H. Preparation, Characterization of Polysaccharides Fractions from Inonotus obliquusand Their Effects on α-Amylase, α-Glucosidase Activity and H2O2-Induced Oxidative Damage in Hepatic L02 Cells. J. Funct. Foods 2018, 48, 179–189. DOI: 10.1016/j.jff.2018.07.024.
  • Chen, P.; Chen, X.; Hao, L.; Du, P.; Li, C.; Han, H.; Xu, H.; Liu, L. The Bioavailability of Soybean Polysaccharides and Their Metabolites on Gut Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Food Chem. 2021, 362, 130233. DOI: 10.1016/j.foodchem.2021.130233.
  • Liu, L.; Xu, J.; Na, R.; Du, R.; Ping, W.; Ge, J.; Zhao, D. Purification, Characterization and Partial Biological Activities of Exopolysaccharide Produced by Saccharomyces cerevisiae Y3. Int. J. Biol. Macromol. 2022, 206, 777–787. DOI: 10.1016/j.ijbiomac.2022.03.083.
  • Zhao, D.; Liu, L.; Jiang, J.; Guo, S.; Ping, W.; Ge, J. The Response Surface Optimization of Exopolysaccharide Produced by Weissella confusa XG-3 and Its Rheological Property. Prep. Biochem. Biotech. 2020, 50, 1014–1022. DOI: 10.1080/10826068.2020.1780609.
  • Wang, Y.; Du, R.; Qiao, X.; Zhao, B.; Zhou, Z.; Han, Y. Optimization and Characterization of Exopolysaccharides with a Highly Branched Structure Extracted from Leuconostoc citreum B-2. Int. J. Biol. Macromol. 2020, 142, 73–84. DOI: 10.1016/j.ijbiomac.2019.09.071.
  • Yan, J.-K.; Yu, Y.-B.; Wang, C.; Cai, W.-D.; Wu, L.-X.; Yang, Y.; Zhang, H.-N. Production, Physicochemical Characteristics, and In Vitro Biological Activities of Polysaccharides Obtained from Fresh Bitter Gourd (Momordica charantia L.) Via Room Temperature Extraction Techniques. Food Chem. 2021, 337, 127798. DOI: 10.1016/j.foodchem.2020.127798.
  • Hou, Z.; Hu, X.; Luan, L.; Yu, C.; Wang, X.; Chen, S.; Ye, X. Prebiotic Potential of RG-I Pectic Polysaccharides from Citrus subcompressa by Novel Extraction Methods. Food Hydrocolloid 2022, 124, 107213. DOI: 10.1016/j.foodhyd.2021.107213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.