216
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biochemical characteristics of Myceliophthora thermophila recombinant β-glucosidase (MtBgl3c) applicable in cellulose bioconversion

, &

References

  • Okolie, J. A.; Mukherjee, A.; Nanda, S.; Dalai, A. K.; Kozinski, J. A. Next-Generation Biofuels and Platform Biochemicals from Lignocellulosic Biomass. Int. J. Energy Res. 2021, 45, 1–25.
  • Dadwal, A.; Sharma, S.; Satyanarayana, T. Progress and Prospects in the Production of Cellulosic Ethanol. In Plant Biotechnology: progress in Genomic Era, Khurana, S.; Gaur, R. Eds.; Springer; Singapore, 2019; pp 245–275.
  • Teeri, T. T. Crystalline Cellulose Degradation: New Insight into the Function of Cellobiohydrolases. Trends Biotech. 1997, 15, 160–167. DOI: 10.1016/S0167-7799(97)01032-9.
  • Cairns, J. R. K.; Esen, A. β-Glucosidases. Cell Mol. Life Sci. 2010, 67, 3389–3405.
  • Yeoman, C. J.; Han, Y.; Dodd, D.; Schroeder, C. M.; Mackie, R. I.; Cann, I. K. Thermostable Enzymes as Biocatalysts in the Biofuel Industry. Adv. Appl. Microbiol. 2010, 70, 1–55. DOI: 10.1016/S0065-2164(10)70001-0.
  • Yang, Y.; Zhang, X.; Yin, Q.; Fang, W.; Fang, Z.; Wang, X.; Zhang, X.; Xiao, Y. A Mechanism of Glucose Tolerance and Stimulation of GH1 β-Glucosidases. Sci. Rep. 2015, 5, 17296.
  • Singhania, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.; Pandey, A. Role and Significance of Beta-Glucosidases in the Hydrolysis of Cellulose for Bioethanol Production. Bioresour. Technol. 2013, 127, 500–507. DOI: 10.1016/j.biortech.2012.09.012.
  • Sørensen, A.; Lübeck, M.; Lübeck, P. S.; Ahring, B. K. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules 2013, 3, 612–631. DOI: 10.3390/biom3030612.
  • Goyal, K.; Selvakumar, P.; Hayashi, K. Characterization of a Thermostable-Glucosidase (BglB) from Thermotoga maritima Showing Transglycosylation Activity. J. Mol. Catal. B Enzym. 2001, 15, 45–53. DOI: 10.1016/S1381-1177(01)00003-0.
  • Hansson, T.; Adlercreutz, P. Enhanced Transglucosylation/Hydrolysis Ratio of Mutants of Pyrococcus furiosus β-Glucosidase: effects of Donor Concentration, Water Content, and Temperature on Activity and Selectivity in Hexanol. Biotechnol. Bioeng. 2001, 75, 656–665. DOI: 10.1002/bit.10043.
  • Mallek-Fakhfakh, H.; Belghith, H. Physicochemical Properties of Thermotolerant Extracellular β-Glucosidase from Talaromyces thermophilus and Enzymatic Synthesis of Cello-Oligosaccharides. Carbohydr. Res. 2016, 419, 41–50. DOI: 10.1016/j.carres.2015.10.014.
  • Karami, F.; Ghorbani, M.; Mahoonak, A. S.; Shackebaei, D.; Khodarahmi, R. Green Technology for Production of Potent Antioxidants and Alkyl Glucosides by Aspergillus niger β-Glucosidase: prospects for Broad Application in the Food Industry. J. Food Meas. Charact. 2022, 16, 1–13.
  • Singh, G.; Verma, A. K.; Kumar, V. Catalytic Properties, Functional Attributes and Industrial Applications of β-Glucosidases. 3 Biotech 2016, 6, 3. DOI: 10.1007/s13205-015-0328-z.
  • Henrissat, B. A Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities. Biochem. J. 1991, 280, 309–316. DOI: 10.1042/bj2800309.
  • Dadwal, A.; Sharma, S.; Satyanarayana, T. Thermostable Cellulose Saccharifying Microbial Enzymes: Characteristics, Recent Advances and Biotechnological Applications. Int. J. Biol. Macromol. 2021, 188, 226–244. DOI: 10.1016/j.ijbiomac.2021.08.024.
  • Dadwal, A.; Sharma, S.; Satyanarayana, T. Progress in Ameliorating Beneficial Characteristics of Microbial Cellulases by Genetic Engineering Approaches for Cellulose Saccharification. Front. Microbiol. 2020, 11, 1387. DOI: 10.3389/fmicb.2020.01387.
  • Ahmed, A.; Nasim, F. H.; Batool, K.; Bibi, A. Microbial β-Glucosidase: Sources, Production and Applications. J. Appl. Env. Microbiol. 2017, 5, 31–46.
  • Lambertz, C.; Garvey, M.; Klinger, J.; Heesel, D.; Klose, H.; Fischer, R.; Commandeur, U. Challenges and Advances in the Heterologous Expression of Cellulolytic Enzymes: A Review, Biotechnol. Biotechnol. Biofuels 2014, 7, 135. DOI: 10.1186/s13068-014-0135-5.
  • Bhatia, Y.; Mishra, S.; Bisaria, V. S. Microbial β-Glucosidases: cloning, Properties, and Applications. Crit. Rev. Biotechnol. 2002, 22, 375–407. DOI: 10.1080/07388550290789568.
  • Berka, R. M.; Grigoriev, I. V.; Otillar, R.; Salamov, A.; Grimwood, J.; Reid, I.; Ishmael, N.; John, T.; Darmond, C.; Moisan, M.-C.; et al. Comparative Genomic Analysis of the Thermophilic Biomass-Degrading Fungi Myceliophthora Thermophila and Thielavia Terrestris. Nat. Biotechnol. 2011, 29, 922–927.
  • Karnaouri, A.; Topakas, E.; Antonopoulou, I.; Christakopoulos, P. Genomic Insights into the Fungal Lignocellulolytic System of Myceliophthora Thermophila. Front. Microbiol. 2014, 5, 281. DOI: 10.3389/fmicb.2014.00281.
  • Karnaouri, A.; Topakas, E.; Paschos, T.; Taouki, I.; Christakopoulos, P. Cloning, Expression and Characterization of an Ethanol Tolerant GH3 β-Glucosidase from Myceliophthora thermophila. Peer J. 2013, 1, e46. DOI: 10.7717/peerj.46.
  • Zhao, J.; Guo, C.; Tian, C.; Ma, Y. Heterologous Expression and Characterization of a GH3 β-Glucosidase from Thermophilic Fungi Myceliophthora thermophila in Pichia pastoris. Appl. Biochem. Biotechnol. 2015, 177, 511–527.
  • Dadwal, A.; Sharma, S.; Satyanarayana, T. Recombinant Cellobiohydrolase of Myceliophthora Thermophila: characterization and Applicability in Cellulose Saccharification. AMB Expr. 2021, 11, 148. DOI: 10.1186/s13568-021-01311-8.
  • Saito, Y.; Kitagawa, W.; Kumagai, T.; Tajima, N.; Nishimiya, Y.; Tamano, K.; Yasutake, Y.; Tamura, T.; Kameda, T. Developing a Codon Optimization Method for Improved Expression of Recombinant Proteins in Actinobacteria. Sci. Rep. 2019, 9, 8338. DOI: 10.1038/s41598-019-44500-z.
  • Akcapinar, G. B.; Venturini, A.; Martelli, P. L.; Casadio, R.; Sezerman, U. O. Modulating the Thermostability of Endoglucanase I from Trichoderma reesei Using Computational Approaches. Protein Eng. Des. Sel. 2015, 28, 127–135.
  • Waterborg, J. H. 2009 The Lowry Method for Protein Quantitation. In The Protein Protocols Handbook, Walker J. M., Ed.; Totowa, NJ: Humana Press, pp 7–10.
  • Miller, G. L. Use of Dinitrosalicyclic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. DOI: 10.1021/ac60147a030.
  • Nan, Y.; Jia, L.; Yang, M.; Xin, D.; Qin, Y.; Zhang, J. Simplified Sodium Chlorite Pretreatment for Carbohydrates Retention and Efficient Enzymatic Saccharification of Silvergrass. Bioresour. Technol. 2018, 261, 223–231. DOI: 10.1016/j.biortech.2018.03.106.
  • Mark, J.; Dwight, E. T. Mechanism for β-Glucosidase Release into Cellulose-Grown Trichoderma reesei Culture Supernatants. Exp. Mycol. 1998, 12, 203–216.
  • Narasimha, G.; Sridevi, A.; Ramanjaneyulu, G.; Reddy, B. R. Purification and Characterization of β-Glucosidase from Aspergillus Niger. Int. J. Food Prop. 2016, 19, 652–661. DOI: 10.1080/10942912.2015.1023398.
  • Bonfá, E. C.; Moretti, M. M. S.; Gomes, E.; Bonilla-Rodriguez, G. O. Biochemical Characterization of an Isolated 50 kDa Beta-Glucosidase from the Thermophilic Fungus Myceliophthora thermophila M.7.7. Biocatal. Agric. Biotechnol. 2018, 13, 311–318. DOI: 10.1016/j.bcab.2018.01.008.
  • Monteiro, L. M. O.; Vici, A. C.; Messias, J. M.; Heinen, P. R.; Pinheiro, V. E.; Rechia, C. G. V.; Buckeridge, M. S.; de Moraes Polizeli, M. L. T. Increased Malbranchea pulchella β-Glucosidase Production and Its Application in Agroindustrial Residue Hydrolysis: A Research Based on Experimental Designs. Biotechnol. Rep. 2021, 30, e00618.
  • Akram, F.; Haq, I. u.; Mukhtar, H. Gene Cloning, Characterization and Thermodynamic Analysis of a Novel Multidomain Hyperthermophilic GH Family 3 β-Glucosidase (TnBgl B) from Thermotoga naphthophila RKU-10 T. Process Biochem. 2018, 66, 70–81. DOI: 10.1016/j.procbio.2017.12.007.
  • Volkov, P. V.; Rozhkova, A. M.; Zorov, IN.; Sinitsyn, A. P. Cloning, Purification and Study of Recombinant GH3 Family β-Glucosidase from Penicillium verruculosum. Biochimie 2020, 168, 231–240. DOI: 10.1016/j.biochi.2019.11.009.
  • Xie, J.; Xu, H.; Jiang, J.; Zhang, N.; Yang, J.; Zhao, J.; Wei, M. Characterization of a Novel Thermostable Glucose-Tolerant GH1 β-Glucosidase from the Hyperthermophile Ignisphaera aggregans and Its Application in the Efficient Production of Baohuoside I from Icariin and Total Epimedium Flavonoids. Bioorg. Chem. 2020, 104, 104296.
  • Florindo, R. N.; Souza, V. P.; Manzine, L. R.; Camilo, C. M.; Marana, S. R.; Polikarpov, I.; Nascimento, A. S. Structural and Biochemical Characterization of a GH3 β-Glucosidase from the Probiotic Bacteria Bifidobacterium adolescentis. Biochimie 2018, 148, 107–115. DOI: 10.1016/j.biochi.2018.03.007.
  • Pyeon, H. M.; Lee, Y. S.; Choi, Y. L. Cloning, Purification, and Characterization of GH3 β-Glucosidase, MtBgl85, from Microbulbifer thermotolerans DAU221. Peer J. 2019, 7, e7106. DOI: 10.7717/peerj.7106.
  • Park, A. R.; Kim, H. J.; Lee, J. K.; Oh, D. K. Hydrolysis and Transglycosylation Activity of a Thermostable Recombinant β-Glycosidase from Sulfolobus acidocaldarius. Appl. Biochem. Biotechnol. 2010, 160, 2236–2247. DOI: 10.1007/s12010-009-8705-x.
  • Hwang, E. J.; Lee, Y. S.; Choi, Y. L. Cloning, Purification, and Characterization of the Organic Solvent Tolerant β-Glucosidase. Appl. Biol. Chem. 2018, 61, 325–336. DOI: 10.1007/s13765-018-0361-9.
  • Kim, Y. S.; Yeom, S. J.; Oh, D. K. Characterization of a GH3 Family β-Glucosidase from Dictyoglomus turgidum and Its Application to the Hydrolysis of Isoflavone Glycosides in Spent Coffee Grounds. J. Agric. Food Chem. 2011, 59, 11812–11818. DOI: 10.1021/jf2025192.
  • Thenchartanan, P.; Wattana-Amorn, P.; Svasti, J.; Kongsaeree, P. T. Improved Synthesis of Long-Chain Alkyl Glucosides Catalyzed by an Engineered β-Glucosidase in Organic Solvents and Ionic Liquids. Biotechnol. Lett. 2020, 42, 2379–2387. DOI: 10.1007/s10529-020-02960-8.
  • Batra, J.; Mishra, S. Organic Solvent Tolerance and Thermostability of a β-Glucosidase co-Engineered by Random Mutagenesis. J. Mol. Catal. B: Enzym. 2013, 96, 61–66. DOI: 10.1016/j.molcatb.2013.07.002.
  • Biver, S.; Stroobants, A.; Portetelle, D.; Vandenbol, M. Two Promising Alkaline β-Glucosidases Isolated by Functional Metagenomics from Agricultural Soil, Including One Showing High Tolerance towards Harsh Detergents, Oxidants and Glucose. J. Ind. Microbiol. Biotechnol. 2014, 41, 479–488. DOI: 10.1007/s10295-014-1400-0.
  • Noriyuki, D.; Hiroyasu, O. Organic Solvent-Tolerant Enzymes. Biochem. Eng. J. 2010, 48, 270–282.
  • Paal, K.; Ito, M.; Withers, S. G. Paenibacillus sp. TS12 Glucosylceramidase, Kinetic Studies of a Novel Sub-Family of Family 3 Glycosidases and Identification of the Catalytic Residues. Biochem. J. 2004, 378, 141–149. DOI: 10.1042/BJ20031028.
  • Dadwal, A.; Singh, V.; Sharma, S.; Satyanarayana, T. Structural Aspects of β-Glucosidase of Myceliophthora thermophila (MtBgl3c) by Homology Modelling and Molecular Docking. J. Biomol. Struct. Dyn. 2022, 40, 5211–5228. DOI: 10.1080/07391102.2020.1869095.
  • Marhuenda-Egea, F. C.; Bonete, M. J. Extreme Halophilic Enzymes in Organic Solvents. Curr. Opin. Biotechnol. 2002, 13, 385–389. DOI: 10.1016/s0958-1669(02)00338-5.
  • Arakawa, T.; Tokunaga, M. Electrostatic and Hydrophobic Interactions Play a Major Role in the Stability and Refolding of Halophilic Proteins. PPL 2004, 11, 125–132. DOI: 10.2174/0929866043478220.
  • Woodward, J.; Wiseman, A. Fungal and Other β-d-Glucosidases - Their Properties and Applications. Enzyme Microb. Technol. 1982, 4, 73–79. DOI: 10.1016/0141-0229(82)90084-9.
  • Mateo, J. J.; Di Stefano, R. Description of the β-Glucosidase Activity of Wine Yeasts. Food Microbiol. 1997, 14, 583–591. DOI: 10.1006/fmic.1997.0122.
  • El-Ghonemy, D. H. Optimization of Extracellular Ethanol-Tolerant β-Glucosidase Production from a Newly Isolated Aspergillus sp. DHE7 via Solid State Fermentation Using Jojoba Meal as Substrate: Purification and Biochemical Characterization for Biofuel Preparation. J. Genet. Eng. Biotechnol. 2021, 19, 45. DOI: 10.1186/s43141-021-00144-z.
  • Parry, N. J.; Beever, D. E.; Owen, E.; Vandenberghe, I.; Van Beeumen, J.; Bhat, M. K. Biochemical Characterization and Mechanism of Action of a Thermostable Beta-Glucosidase Purified from Thermoascus Aurantiacus. Biochem. J. 2001, 353, 117–127.
  • Riou, C.; Salmon, J. M.; Vallier, M. J.; Günata, Z.; Barre, P. Purification, Characterization, and Substrate Specificity of a Novel Highly Glucose-Tolerant Beta-Glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 1998, 64, 3607–3614. DOI: 10.1128/AEM.64.10.3607-3614.1998.
  • Christakopoulos, P.; Goodenough, P. W.; Kekos, D.; Macris, B. J.; Claeyssens, M.; Bhat, M. K. Purification and Characterization of an Extracellular β-Glucosidase with Transglycosylation and Exo-Glucosidase Activities from Fusarium oxysporum. Eur J Biochem. 1994, 224, 379–385. DOI: 10.1111/j.1432-1033.1994.00379.x.
  • Sun, N.; Liu, X.; Zhang, B.; Wang, X.; Na, W.; Tan, Z.; Li, X.; Guan, Q. Characterization of a Novel Recombinant Halophilic β-Glucosidase of Trichoderma harzianum Derived from Hainan Mangrove. BMC Microbiol. 2022, 22, 185.
  • Kao, M. R.; Yu, S. M.; David Ho, T.-H. Improvements of the Productivity and Saccharification Efficiency of the Cellulolytic β-Glucosidase D2-BGL in Pichia pastoris via Directed Evolution. Biotechnol. Biofuels 2021, 14, 126.
  • Huang, C.; Feng, Y.; Patel, G.; Xu, X.; Qian, J.; Liu, Q.; Kai, G. Production, Immobilization and Characterization of Beta-Glucosidase for Application in Cellulose Degradation from a Novel Aspergillus versicolor. Int. J. Biol. Macromol. 2021, 177, 437–446.
  • Liang, C. Y.; Xu, J. L.; Xu, H. J.; Qi, W.; Zhang, Y.; Luo, W.; Chen, X. Y.; Wang, Z. M.; Yuan, Z. H. Gene Cloning and Characterization of an Organic Solvent-Stimulated β-Glucosidase and Its Application for the Co-Production of Ethanol and Succinic Acid. Cellulose 2019, 26, 8237–8248. DOI: 10.1007/s10570-019-02477-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.