192
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Flask and reactor scale production of plant growth regulators by Inonotus hispidus: optimization, immobilization and kinetic parameters

, , , , , , & show all

References

  • Choi, J. H. Biologically Functional Molecules from Mushroom Forming Fungi. Biosci. Biotechnol. Biochem 2018, 82, 372–382. DOI: 10.1080/09168451.2018.1431519.
  • Sidorova, I.; Voronina, E. Bioactive Secondary Metabolites of Basidiomycetes and Its Potential for Agricultural Plant Growth Promotion. Singh, H. B., Keswani, C., Reddy, M. S., & García-Estrada E. S. C., Eds.; Secondary Metabolites of Plant Growth-Promoting Rhizo-Microorganisms; Springer Nature, Singapore, 2019; pp. 3–26
  • Wu, J.; Kawagishi, H. Plant Growth Regulators from Mushrooms. J. Antibiot 2020, 73, 657–665. DOI: 10.1038/s41429-020-0352-z.
  • Yadav, A. N.; Kaur, T.; Devi, R.; Kour, D.; Yadav, A.; Dikilitas, M.; Usmani, Z.; Yadav, N.; Abdel-Azeem, A. M.; Ahluwalia, A. S. Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects. Abdel-Azeem, A. M., Yadav A. N., Yadav, N., Usmani Z., Eds.; Industrially Important Fungi for Sustainable Development, Fungal Biology; Springer Nature, Switzerland, 2021; pp. 541–572
  • Kawagishi, H. Chemical Studies on Bioactive Compounds Related to Higher Fungi. Biosci. Biotechnol. Biochem 2021, 85, 1–7. DOI: 10.1093/bbb/zbaa072.
  • Curtis, P. J.; Cross, B. E. Gibberellic Acid. A New Metabolite from the Culture Filtrates of Gibberella fujikuroi. Chem. Ind 1954, 35, 1066.
  • Gruen, H. E. Auxins and Fungi. Ann. Rev. Plant Physiol 1959, 10, 405–440. DOI: 10.1146/annurev.pp.10.060159.002201.
  • Epstein, E.; Miles, P. G. Identification of Indole-3-Acetic Acid in the Basidiomycete Schizophyllum commune. Plant Physiol 1967, 42, 911–914. DOI: 10.1104/pp.42.7.911.
  • Kurosawa, E. Experimental Studies on the Nature of the Substance Secreted by the “Bakanae” Fungus. Nat. Hist. Soc. Formosa 1926, 16, 213–227.
  • Yabuta, T.; Hayachi, T. Biochemical Studies on “Bakanae” Fungus of the Rice. Part II Isolation of “Gibberellin”, the Active Principle Which Makes the Rice Seedlings Grow Slenderly. Nippon Nōgeikagaku Kaishi 1939, 15, 257–266. DOI: 10.1271/nogeikagaku1924.15.257.
  • Ünyayar, S.; Topcuoglu, S. F.; Ünyayar, A. A Modified Method for Extraction and Identification of Indole-3-Acetic Acid (IAA), Gibberellic Acid (GA3), Abscisic Acid (ABA) and Zeatin Produced by Phanerochaete chrysosporium ME 446. Bulgar. J. Plant Physiol 1996, 22, 105–110.
  • Ünyayar, S.; Ünyayar, A.; Ünal, E. Production of Auxin and Abscisic Acid by Phanerochaete chrysosporium ME446 Immobilized on Polyurethane Foam. Turk. J. Biol 2000, 24, 769–774.
  • Bose, A.; Shah, D.; Keharia, H. Production of Indole-3-Acetic-Acid (IAA) by the White Rot Fungus Pleurotus ostreatus under Submerged Condition of Jatropha Seedcake. Mycology 2013, 4, 103–111. DOI: 10.1080/21501203.2013.823891.
  • Yürekli, F.; Yesilada, Ö.; Yürekli, M.; Topcuoglu, S. F. Plant Growth Hormone Production from Olive Oil Mill and Alcohol Factory Wastewaters by White Rot Fungi. World J. Microbiol. Biotechnol 1999, 15, 503–505. DOI: 10.1023/A:1008952732015.
  • Yurekli, F.; Geckil, H.; Topcuoglu, F. The Synthesis of Indole-3-Acetic Acid by the Industrially Important White-Rot Fungus Lentinus sajor-caju under Different Culture Conditions. Mycol. Res 2003, 107, 305–309. DOI: 10.1017/s0953756203007391.
  • Pham, M. T.; Huang, C. M.; Kirschner, R. The Plant Growth-Promoting Potential of the Mesophilic Wood-Rot Mushroom Pleurotus pulmonarius. J. Appl. Microbiol 2019, 127, 1157–1171. DOI: 10.1111/jam.14375.
  • Tiryaki, D.; Gülmez, Ö. Determination of the Effect of Indole Acetic Acid (IAA) Produced from Edible Mushrooms on Plant Growth and Development. Ana. J. Biol 2021, 2, 17–20.
  • Fushimi, K.; Anzai, K.; Tokuyama, S.; Kiriiwa, Y.; Matsumoto, N.; Sekiya, A.; Hashizume, D.; Nagasawa, K.; Hirai, H.; Kawagishi, H. Agrocybynes A-E from the Culture Broth of Agrocybe praecox. Tetrahedron 2012, 68, 1262–1265. DOI: 10.1016/j.tet.2011.11.049.
  • Kobori, H.; Sekiya, A.; Suzuki, T.; Choi, J. H.; Hirai, H.; Kawagishi, H. Bioactive Sesquiterpene Aryl Esters from the Culture Broth of Armillaria sp. J. Nat. Prod 2015, 78, 163–167. DOI: 10.1021/np500322t.
  • Ridwan, A. Y.; Wu, J.; Choi, J. H.; Hirai, H.; Kawagishi, H. Bioactive Compounds from the Edible Mushroom Cortinarius caperatus. Mycoscience 2018, 59, 172–175. DOI: 10.1016/j.myc.2017.08.015.
  • Wu, J.; Uchida, K.; Ridwan, A. Y.; Kondo, M.; Choi, J. H.; Hirai, H.; Kawagishi, H. Erinachromanes a and B and Erinaphenol a from the Culture Broth of Hericium erinaceus. J. Agric. Food Chem 2019, 67, 3134–3139. DOI: 10.1021/acs.jafc.8b06050.
  • Ito, A.; Wu, J.; Ozawa, N.; Choi, J.-H.; Hirai, H.; Kawagishi, H. Plant Growth Regulators from the Edible Mushroom Leccinum extremiorientale. Mycoscience 2017, 58, 383–386. DOI: 10.1016/j.myc.2017.04.008.
  • Choi, J. H.; Fushimi, K.; Abe, N.; Tanaka, H.; Maeda, S.; Morita, A.; Hara, M.; Motohashi, R.; Matsunaga, J.; Eguchi, Y.; et al. Disclosure of the “Fairy” of Fairy-Ring-Forming Fungus Lepista sordida. ChemBioChem 2010, 11, 1373–1377. DOI: 10.1002/cbic.201000112.
  • Choi, J. H.; Abe, H.; Tanaka, H.; Fushimi, K.; Nishina, Y.; Morita, A.; Kiriiwa, Y.; Motohashi, R.; Hashizume, D.; Koshino, H.; Kawagishi, H. Plant-Growth Regulator, Imidazole-4-Carboxamide, Produced by the Fairy Ring Forming Fungus. J. Agric. Food Chem 2010, 58, 9956–9959. DOI: 10.1021/jf101619a.
  • Tobina, H.; Choi, J. H.; Asai, T.; Kiriiwa, Y.; Asakawa, T.; Kan, T.; Morita, A.; Kawagishi, H. 2-Azahypoxanthine and Imidazole-4-Carboxamide Produced by the Fairy-Ring-Forming Fungus Increase Wheat Yield. Field Crops Res 2014, 162, 6–11. DOI: 10.1016/j.fcr.2014.03.008.
  • Malya, I. Y.; Wu, J.; Harada, E.; Toda, M.; D'Alessandro-Gabazza, C. N.; Yasuma, T.; Gabazza, E. C.; Choi, J.-H.; Hirai, H.; Kawagishi, H. Plant Growth Regulators and Axl and Immune Checkpoint Inhibitors from the Edible Mushroom Leucopaxillus giganteus. Biosci Biotechnol Biochem 2020, 84, 1332–1338. DOI: 10.1080/09168451.2020.1743170.
  • Ridwan, A. Y.; Matoba, R.; Wu, J.; Choi, J. H.; Hirai, H.; Kawagishi, H. A Novel Plant Growth Regulator from Pholiota lubrica. Tetrahedron Lett 2018, 59, 2559–2561. DOI: 10.1016/j.tetlet.2018.05.045.
  • Matsuzaki, N.; Wu, J.; Kawaide, M.; Choi, J. H.; Hirai, H.; Kawagishi, H. Plant Growth Regulatory Compounds from the Mushroom Russula vinosa. Mycoscience 2016, 57, 404–407. DOI: 10.1016/j.myc.2016.07.001.
  • Wu, J.; Kobori, H.; Kawaide, M.; Suzuki, T.; Choi, J. H.; Yasuda, N.; Noguchi, K.; Matsumoto, T.; Hirai, H.; Kawagishi, H. Isolation of Bioactive Steroids from the Stropharia rugosoannulata Mushroom and Absolute Configuration of Strophasterol B. Biosci Biotechnol Biochem 2013, 77, 1779–1781. DOI: 10.1271/bbb.130216.
  • Vedenicheva, N. P.; Al-Maali, G. A.; Mytropolska, N. Y.; Mykhaylova, O. B.; Bisko, N. A.; Kosakivska, I. V. Endogenous Cytokinins in Medicinal Basidiomycetes Mycelial Biomass. Biotechnol. Acta 2016, 9, 55–62. DOI: 10.15407/biotech9.01.055.
  • Kawagishi, H. Fairy chemicals – A Candidate for a New Family of Plant Hormones and Possibility of Practical Use in Agriculture. Biosci Biotechnol Biochem 2018, 82, 752–758. DOI: 10.1080/09168451.2018.1445523.
  • Bernicchia, A. Fungi Europaei (Polyparaceae S.L) Vol,10. Edizioni Candusso: Italia. 2005
  • Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D‟Ellena, T.; Angeles, G.; Federici, E.; Savino, E.; et al. A Comparative Study of the Antimicrobial and Antioxidant Activities of Inonotus hispidus Fruit and Their Mycelia Extracts. Int. J. Food Prop 2019, 22, 768–783. DOI: 10.1080/10942912.2019.1609497.
  • Ali, N. A. A.; Mothana, R. A. A.; Lesnau, A.; Pilgrim, H.; Lindequist, U. Antiviral Activity of Inonotus hispidus. Fitoterapia 2003, 74, 483–485. DOI: 10.1016/s0367-326x(03)00119-9.
  • Gründemann, C.; Arnhold, M.; Meier, S.; Bäcker, C.; Garcia-Käufer, M.; Grunewald, F.; Steinborn, C.; Klemd, A. M.; Wille, R.; Huber, R.; Lindequist, U. Effects of Inonotus hispidus Extracts and Compounds on Human Immunocompetent Cells. Planta Med 2016, 82, 1359–1367. DOI: 10.1055/s-0042-111693.
  • Gonindard, C.; Bergonzi, C.; Denier, C.; Sergheraert, C.; Klaebe, A.; Chavant, L.; Hollande, E. Synthetic Hispidin, a PKC Inhibitor, is More Cytotoxic toward Cancer Cells than Normal Cells in Vitro. Cell Biol. Toxicol 1997, 13, 141–153. DOI: 10.1023/a:1007321227010.
  • Bergmann, P.; Takenberg, M.; Frank, C.; Zschätzsch, M.; Werner, A.; Berger, R. G.; Ersoy, F. Cultivation of Inonotus hispidus in Stirred Tank and Wave Bag Bioreactors to Produce the Natural Colorant Hispidin. Fermentation 2022, 8, 541. DOI: 10.3390/fermentation8100541.
  • Machado, C. M. M.; Soccol, C. R.; De Oliveira, B. H.; Pandey, A. Gibberellic Acid Production by Solid-State Fermentation in Coffee Husk. Appl Biochem Biotechnol 2002, 102–103, 179–191. DOI: 10.1385/abab:102-103:1-6:179.
  • Takayama, T.; Yoshida, H.; Araki, K.; Nakayama, K. Microbial Production of Abscisic Acid with Cercospora rosicola.1. Stimulation of Abscisic Acid Accumulation by Plant Extracts. Biotechnol. Lett 1983, 5, 55–58. DOI: 10.1007/BF00189965.
  • Swain, M. R.; Ray, R. C. Optimization of Cultural Conditions and Their Statistical Interperation for Production of Indole-3-Acetic Acid by Bacillus subtilis CM5 Using Cassava Fibrous Residue. J. Sci. Ind. Res 2008, 67, 622–628.
  • Bayburt, C.; Karaduman, A. B.; Yenice Gürsu, B.; Tuncel, M.; Yamaç, M. Decolourization and Detoxification of Textile Dyes by Lentinus arcularius in Immersion Bioreactor Scale. Int. J. Environ. Sci. Technol 2020, 17, 945–958. DOI: 10.1007/s13762-019-02519-9.
  • Plackett, R. L.; Burman, J. P. The Design of Optimum Multifactorial Experiments. Biometrika 1946, 33, 305–325. DOI: 10.1093/biomet/33.4.305.
  • Rodriguez Couto, S.; Sanroman, M. A.; Hofer, D.; Gübitz, G. M. Stainless Steel Sponge: A Novel Carrier for the Immobilisation of the White-Rot Fungus Trametes hirsuta for Decolourization of Textile Dyes. Bioresour Technol 2004, 95, 67–72. DOI: 10.1016/j.biortech.2003.05.002.
  • Ramsay, J. A.; Mok, W. H. W.; Luu, Y.-S.; Savage, M. Decoloration of Textile Dyes by Alginate-Immobilized Trametes versicolor. Chemosphere 2005, 61, 956–964. DOI: 10.1016/j.chemosphere.2005.03.070.
  • Yılmaz Öztürk, B.; Yenice Gürsu, B.; Dağ, İ. In Vitro Effect of Farnesol on Planktonic Cells and Dual Biofilm Formed by Candida albicans and Escherichia coli. Biofouling 2022, 38, 355–366. DOI: 10.1080/08927014.2022.2066530.
  • Hwang, H. J.; Kim, S. W.; Xu, C. P.; Choi, J. W.; Yun, J. W. Morphological and Rheological Properties of the Three Different Species of Basidiomycetes Phellinus in Submerged Cultures. J. Appl. Microbiol 2004, 96, 1296–1305. DOI: 10.1111/j.1365-2672.2004.02271.x.
  • Shukla, R.; Chand, S.; Srivastava, A. K. Batch Kinetics and Modeling of Gibberellic Acid Production by Gibberella fujikuroi. Enzyme Microb. Technol 2005, 36, 492–497. DOI: 10.1016/j.enzmictec.2004.11.005.
  • Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem 1956, 28, 350–356. DOI: 10.1021/ac60111a017.
  • Gordon, S. A.; Fleck, A.; Bell, J. Optimal Conditions for the Estimation of Ammonium by the Berthelot Reaction. Ann. Clin. Biochem 1978, 15, 270–275. DOI: 10.1177/000456327801500164.
  • Başıaçık Karakoç, Ş.; Aksöz, N. Bazı Matrikslere Tutuklanmiş Aspergillus niger 'den Gibberellik Asit Üretimi. Orlab on-Line Mikrobiyol. Derg 2005, 3, 16.
  • Başıaçık Karakoç, Ş.; Aksöz, N. Some Optimal Cultural Parameters for Gibberellic Acid Biosynthesis by Pseudomonas sp. Turk. J. Biol 2006, 30, 81–85.
  • de Oliveira, J.; Rodrigues, C.; Vandenberghe, L. P. S.; Câmara, M. C.; Libardi, N.; Soccol, C. R. Gibberellic Acid Production by Different Fermentation Systems Using Citric Pulp as Substrate/Support. Biomed Res. Int 2017, 2017, 5191046. DOI: 10.1155/2017/5191046.
  • Ünyayar, S. Production of Gibberellic Acid and Cytokinin by Phanerochaete chrysosporium ME446 Immobilized on Polyurethane Foam. Turk. J. Biol 2000, 24, 513–519.
  • Gökdere, M.; Ateş, S. Extractive Fermentation of Gibberellic Acid with Free and Immobilized Gibberella fujikuroi. Prep Biochem Biotechnol 2014, 44, 80–89. DOI: 10.1080/10826068.2013.792275.
  • Kim, C. J.; Lee, S. J.; Chang, Y. K.; Chun, G. T.; Jeong, Y. H.; Kim, S. B. Repeated-Batch Culture of Immobilized Gibberella fujikuroi for Gibberellic Acid Production: An Optimization Study. Biotechnol. Bioprocess Eng 2006, 11, 544–549. DOI: 10.1007/BF02932081.
  • Durán-Páramo, E.; Molina-Jiménez, H.; Brito-Arias, M. A.; Martínez, F. R. Gibberellic Acid Production by Free and Immobilized Cells in Different Culture Systems. Appl. Biochem. Biotechnol 2004, 114, 81–388. DOI: 10.1385/ABAB:114:1-3:381.
  • Tomasini, A.; Fajardo, C.; Barrios-Gonzalez, J. Gibberellic Acid Production Using Different Solid-State Fermentation Systems. World J. Microbiol. Biotechnol 1997, 13, 203–206. DOI: 10.1023/A:1018545932104.
  • Silva, E. M. E.; Dendooven, L.; Reynell, J. A. U.; Ramirez, A. I. M.; Gonzalez Alatorre, G.; Martinez, M. T. Morphological Development and Gibberellin Production by Different Strains of Gibberella fujikuroi in Shake Flasks and Bioreactor. World J. Microbiol. Biotechnol 1999, 15, 753–755. DOI: 10.1023/A:1008976000179.
  • Escamilla, E. M.; Dendooven, L.; Magaña, I. P.; Parra, R.; De la Torre, M. Optimization of Gibberellic Acid Production by Immobilized Gibberella fujikuroi Mycelium in Fluidized Bioreactors. J. Biotechnol 2000, 76, 147–155. DOI: 10.1016/s0168-1656(99)00182-0.
  • Seyis Bilkay, I.; Karakoç, Ş.; Aksöz, N. Indole-3-Acetic Acid and Gibberellic Acid Production in Aspergillus niger. Turk. J. Biol 2010, 34, 313–318. DOI: 10.3906/biy-0812-15.
  • Qiang, X.; Ding, J.; Lin, W.; Li, Q.; Xu, C.; Zheng, Q.; Li, Y. Alleviation of the Detrimental Effect of Water Deficit on Wheat (Triticum aestivum L.) Growth by an Indole Acetic Acid-Producing Endophytic Fungus. Plant Soil 2019, 439, 373–391. DOI: 10.1007/s11104-019-04028-7.
  • Rangaswamy, V. Improved Production of Gibberellic Acid by Fusarium moniliforme. J. Microbiol. Res 2012, 2, 51–55. DOI: 10.5923/j.microbiology.20120203.02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.