139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fermentation of Robinia pseudoacacia flower for improving the antioxidation: optimized conditions, active composition, mechanism, and biotransformation process

, , , , , , & show all

References

  • Ji, H. F.; Du, A.; Zhang, L.; Xu, C. Y.; Yang, M.; Li, E. F. Effects of Drying Methods on Antioxidant Properties in Robinia pseudoacacia L. Flowers. J. Med. Plants Res. 2012, 6, 3233–3239. DOI: 10.5897/JMPR12.107.
  • Frédérich, M.; Marcowycz, A.; Cieckiewicz, E.; Mégalizzi, V.; Angenot, L.; Kiss, R. In Vitro Anticancer Potential of Tree Extracts from the Walloon Region Forest. Planta Med. 2009, 75, 1634–1637. DOI: 10.1055/s-0029-1185867.
  • Liang, M.; Liu, G.; Zhao, Q.; Yang, S.; Zhong, S.; Cui, G.; He, X.; Zhao, X.; Guo, F.; Wu, C.; Zhu, R. Effects of Taishan Robinia pseudoacacia Polysaccharides on Immune Function in Chickens. Int. Immunopharmacol. 2013, 15, 661–665. DOI: 10.1016/j.intimp.2013.02.026.
  • Nautiyal, C. S.; Govindarajan, R.; Lavania, M.; Pushpangadan, P. Novel Mechanism of Modulating Natural Antioxidants in Functional Foods: Involvement of Plant Growth Promoting Rhizobacteria NRRL B-30488. J. Agric. Food. Chem. 2008, 56, 4474–4481. DOI: 10.1021/jf073258i.
  • Lo, Y. H.; Lin, R. D.; Lin, Y. P.; Liu, Y. L.; Lee, M. H. Active Constituents from Sophora japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes. J. Ethnopharmacol. 2009, 124, 625–629. DOI: 10.1016/j.jep.2009.04.053.
  • Fraga, C. G.; Croft, K. D.; Kennedy, D. O.; Tomás-Barberán, F. A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. DOI: 10.1016/j.jep.2009.04.053.
  • Wei, L.; Yang, M.; Huang, L.; Li, J. L. Antibacterial and Antioxidant Flavonoid Derivatives from the Fruits of Metaplexis japonica. Food Chem. 2019, 289, 308–312. DOI: 10.1016/j.foodchem.2019.03.070.
  • Hur, S. J.; Lee, S. Y.; Kim, Y. C.; Choi, I.; Kim, G. B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. DOI: 10.1016/j.foodchem.2014.03.112.
  • Huynh, N. T.; Camp, J. V.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369. DOI: 10.3390/ijms151119369.
  • Bonache, M. A.; Moreno-Fernández, S.; Miguel, M.; Sabater-Muñoz, B.; González-Muñiz, R. Small Library of Triazolyl Polyphenols Correlating Antioxidant Activity and Stability with Number and Position of Hydroxyl Groups. ACS Comb. Sci. 2018, 20, 694–699. DOI: 10.1021/acscombsci.8b00118.
  • Ferreira-Lazarte, A.; Plaza-Vinuesa, L.; de Las Rivas, B.; Villamiel, M.; Muñoz, R.; Moreno, F. J. Production of α-Rhamnosidases from Lactobacillus plantarum WCFS1 and Their Role in Deglycosylation of Dietary Flavonoids Naringin and Rutin. Int. J. Biol. Macromol. 2021, 193, 1093–1102. DOI: 10.1016/j.ijbiomac.2021.11.053.
  • Berim, A.; Gang, D. R. Production of Methoxylated Flavonoids in Yeast Using Ring a Hydroxylases and Flavonoid O-Methyltransferases from Sweet Basil. Appl. Microbiol. Biotechnol. 2018, 102, 5585–5598. DOI: 10.1007/s00253-018-9043-0.
  • Cao, H.; Chen, X.; Jassbi, A. R.; Xiao, J. Microbial Biotransformation of Bioactive Flavonoids. Biotechnol. Adv. 2015, 33, 214–223. DOI: 10.1016/j.biotechadv.2014.10.012.
  • Parshikov, I. A.; Sutherland, J. B. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger. Appl. Biochem. Biotechnol. 2015, 176, 903–923. DOI: 10.1007/s12010-015-1619-x.
  • Leopoldini, M.; Russo, N.; Toscano, M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011, 125, 288–306. DOI: 10.1016/j.foodchem.2010.08.012.
  • Wang, S.; Wang, Y.; Wang, S.; Guo, S.; Gu, D.; Wang, J.; Yang, Y. Lipase Immobilization on Multi-Walled Carbon Nanotubes Used as a Target Fishing Tool and Followed by Molecular Docking Technique to Analyze Lipase Inhibitor from Robinia pseudoacacia L. Ind. Crops Prod. 2022, 178, 114645. DOI: 10.1016/j.indcrop.2022.114645.
  • Yang, C.; Yang, Y.; Aisa, H. A.; Xin, X.; Ma, H.; Yili, A.; Zhao, Y. Bioassay-Guided Isolation of Antioxidants from Astragalus altaicus by Combination of Chromatographic Techniques. J. Sep. Sci. 2012, 35, 977–983. DOI: 10.1002/jssc.201101104.
  • Yang, J.; Huang, Y.; Xu, H.; Gu, D.; Xu, F.; Tang, J.; Fang, C.; Yang, Y. Optimization of Fungi Co-fermentation for Improving Anthraquinone Contents and Antioxidant Activity Using Artificial Neural Networks. Food Chem. 2020, 313, 126138. DOI: 10.1016/j.foodchem.2019.126138.
  • Chen, G.; Chen, H. Extraction and Deglycosylation of Flavonoids from Sumac Fruits Using Steam Explosion. Food Chem. 2011, 126, 1934–1938. DOI: 10.1016/j.foodchem.2010.12.025.
  • Luiza de Farias, V.; Ximenes Monteiro, K.; Rodrigues, S.; André Narciso Fernandes, F.; Adolfo Saavedra Pinto, G. Comparison of Aspergillus niger Spore Production on Potato Dextrose Agar (PDA) and Crushed Corncob Medium. J. Gen. Appl. Microbiol. 2010, 56, 399–402. DOI: 10.2323/jgam.56.399.
  • Seerat, W.; Akram, A.; Qureshi, R.; Yaseen, G.; Mukhtar, T.; Hanif, N. Q. Light and Scanning Electron Microscopic Characterization of Aflatoxins Producing Aspergillus flavus in the Maize Crop. Microsc. Res. Tech. 2022, 85, 2894–2903. DOI: 10.1002/jemt.24139.
  • Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical Water Extraction of Polyphenolic Compounds from Sorghum (Sorghum bicolor L.) Bran and Their Biological Activities. Food Chem. 2018, 262, 14–20. DOI: 10.1016/j.foodchem.2018.04.073.
  • Kang, J.; Gu, D.; Wu, T.; Wang, M.; Zhang, H.; Guo, H.; Yin, Y.; Yang, Y.; Tian, J. An Approach Based upon the Consecutive Separation and the Economical Two-Phase Solvent System Preparation Using UNIFAC Mathematical Model for Increasing the Yield of High-Speed Counter-Current Chromatography. Sep. Purif. Technol. 2016, 162, 142–147. DOI: 10.1016/j.seppur.2016.02.026.
  • Yang, Y.; Aisa, H. A.; Ito, Y. Novel Design for Centrifugal Countercurrent Chromatography: I. Zigzag Toroidal Column. J. Liq. Chromatogr. Rel. Technol. 2009, 32, 2030–2042. DOI: 10.1080/10826070903126856.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
  • Wang, G.; Liu, Y.; Zhang, L.; An, L.; Chen, R.; Liu, Y.; Luo, Q.; Li, Y.; Wang, H.; Xue, Y. Computational Study on the Antioxidant Property of Coumarin-Fused Coumarins. Food Chem. 2020, 304, 125446. DOI: 10.1016/j.foodchem.2019.125446.
  • Guo, S.; Wang, S.; Meng, J.; Gu, D.; Yang, Y. Immobilized Enzyme for Screening and Identification of anti-Diabetic Components from Natural Products by Ligand Fishing. Crit. Rev. Biotechnol. 2023, 43, 242–257. DOI: 10.1080/07388551.2021.2025034 IF: 9.062 Q1 B1.
  • Torabizadeh, H.; Mikani, M. Kinetic and Thermodynamic Features of Nanomagnetic Cross-Linked Enzyme Aggregates of Naringinase Nanobiocatalyst in Naringin Hydrolysis. Int. J. Biol. Macromol. 2018, 119, 717–725. DOI: 10.1016/j.ijbiomac.2018.08.005.
  • Chang, J.; Lee, Y. S.; Fang, S. J.; Park, D. J.; Choi, Y. L. Hydrolysis of Isoflavone Glycoside by Immobilization of β-Glucosidase on a Chitosan-Carbon in Two-Phase System. Int. J. Biol. Macromol. 2013, 61, 465–470. DOI: 10.1016/j.ijbiomac.2013.08.014.
  • Meng, J.; Li, Q.; Cao, Z.; Gu, F.; Wang, Y.; Zhang, Y.; Wang, Y.; Yang, Y.; He, F. Rapid Screening and Separation of Active Compounds against α-Amylase from Toona Sinensis by Ligand Fishing and High-Speed Counter-Current Chromatography. Int. J. Biol. Macromol. 2021, 174, 270–277. DOI: 10.1016/j.ijbiomac.2021.01.195.
  • Wu, X.; Qu, B.; Liu, Y.; Ren, X.; Wang, S.; Quan, Y. Highly Enhanced Activity and Stability via Affinity Induced Immobilization β-Glucosidase from Aspergillus niger onto Amino-Based Silica for the Biotransformation of Ginsenoside Rb1. J. Chromatogr. A 2021, 1653, 462388. DOI: 10.1016/j.chroma.2021.462388.
  • Li, L. J.; Liu, X. Q.; Du, X. P.; Wu, L.; Jiang, Z. D.; Ni, H.; Li, Q. B.; Chen, F. Preparation of Isoquercitrin by Biotransformation of Rutin Using α-L-Rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC Purification. Prep. Biochem. Biotechnol. 2020, 50, 1–9. DOI: 10.1080/10826068.2019.1655763.
  • Jiao, J.; Gai, Q. Y.; Wang, W.; Zang, Y. P.; Niu, L. L.; Fu, Y. J.; Wang, X. Remarkable Enhancement of Flavonoid Production in a Co-cultivation System of Isatis tinctoria L. hairy Root Cultures and Immobilized Aspergillus niger. Ind. Crops Prod. 2018, 112, 252–261. DOI: 10.1016/j.indcrop.2017.12.017.
  • Ibrahim, A. R.; Abul-Hajj, Y. J. Microbial Transformation of Flavone and Isoflavone. Xenobiotica 1990, 20, 363–373. DOI: 10.3109/00498259009046853.
  • Mahmoud, Y. A.; Assawah, S. W.; El-Sharkawy, S. H.; Abdel-Salam, A. Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites. Mycobiology 2008, 36, 121–133. DOI: 10.4489/MYCO.2008.36.2.121.
  • Westlake, D. W. S.; Talbot, G.; Blakley, E. R.; Simpson, F. J. Microbial Decomposition of Rutin. Can. J. Microbiol. 1959, 5, 621–629.
  • Tao, A.; Feng, X.; Sheng, Y.; Song, Z. Optimization of the Artemisia Polysaccharide Fermentation Process by Aspergillus niger. Front. Nutr. 2022, 9, 842766. DOI: 10.3389/fnut.2022.842766.
  • Zhang, W.; Xue, B.; Li, M.; Mu, Y.; Chen, Z.; Li, J.; Shan, A. Screening a Strain of Aspergillus niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B1. Toxins 2014, 6, 3157–3172. DOI: 10.3390/toxins6113157.
  • Mamy, D.; Huang, Y.; Akpabli-Tsigbe, N. D. K.; Battino, M.; Chen, X. Valorization of Citrus reticulata Peels for Flavonoids and Antioxidant Enhancement by Solid-State Fermentation Using Aspergillus niger CGMCC 3.6189. Molecules 2022, 27, 8949. DOI: 10.3390/molecules27248949.
  • Li, Q.; Ray, C. S.; Callow, N. V.; Loman, A. A.; Islam, S. M. M.; Ju, L. K. Aspergillus niger Production of Pectinase and α-Galactosidase for Enzymatic Soy Processing. Enzyme Microb. Technol. 2020, 134, 109476. DOI: 10.1016/j.enzmictec.2019.109476.
  • Tedeschi, L. O. Assessment of the Adequacy of Mathematical Models. Agric. Syst. 2006, 89, 225–247. DOI: 10.1016/j.agsy.2005.11.004.
  • Sarikurkcu, C.; Kocak, M. S.; Tepe, B.; Uren, M. C. An Alternative Antioxidative and Enzyme Inhibitory Agent from Turkey: Robinia pseudoacacia L. Ind. Crops Prod. 2015, 78, 110–115. DOI: 10.1016/j.indcrop.2015.10.017.
  • Veitch, N. C.; Elliott, P. C.; Kite, G. C.; Lewis, G. P. Flavonoid Glycosides of the Black Locust Tree, Robinia pseudoacacia (Leguminosae). Phytochemistry 2010, 71, 479–486. DOI: 10.1016/j.phytochem.2009.10.024.
  • Wang, J.; Gu, D.; Wang, M.; Guo, X.; Li, H.; Dong, Y.; Guo, H.; Wang, Y.; Fan, M.; Yang, Y. Rational Approach to Solvent System Selection for Liquid–Liquid Extraction–Assisted Sample Pretreatment in Counter–Current Chromatography. J. Chromatogr. B 2017, 1053, 16–19. DOI: 10.1016/j.jchromb.2017.04.013.
  • Zhang, Y.; Gu, D.; He, S.; Meng, J.; Wang, J.; Wang, Y.; Wang, Y.; Tian, J.; Yang, Y. Enzyme Reaction-Guided Identification of Active Composition from the Flowers of Sophora japonica Var. Violacea. Food Funct. 2020, 11, 4356–4362. DOI: 10.1039/d0fo00625d.
  • Gu, D.; Yang, Y.; Zhong, J.; Aisa, H. A.; Zhang, T. Y. High-Speed Counter-Current Chromatography Combined with Column Chromatography for Isolation of Methyllycaconitine from Delphinium pseudocyanthum. Chromatographia 2007, 66, 949–951. DOI: 10.1365/s10337-007-0432-2.
  • Yang, Y.; Wang, Y.; Zeng, W.; Tian, J.; Zhao, X.; Han, J.; Huang, D.; Gu, D. A Strategy Based on Liquid-Liquid-Refining Extraction and High-Speed Counter-Current Chromatography for the Bioassay-Guided Separation of Active Compound from Taraxacum mongolicum. J. Chromatogr. A 2020, 1614, 460727. DOI: 10.1016/j.chroma.2019.460727.
  • Jin, Y.; Zhai, Z.; Jia, H.; Lai, J.; Si, X.; Wu, Z. Kaempferol Attenuates Diquat-Induced Oxidative Damage and Apoptosis in Intestinal Porcine Epithelial Cells. Food Funct. 2021, 12, 6889–6899. DOI: 10.1039/d1fo00402f.
  • Nirmal, N. P.; Mereddy, R.; Webber, D.; Sultanbawa, Y. Biochemical, Antioxidant and Sensory Evaluation of Davidsonia pruriens and Davidsoina jerseyana Fruit Infusion. Food Chem. 2021, 342, 128349. DOI: 10.1016/j.foodchem.2020.128349.
  • Hou, C.; Chai, G.; Li, H. Antioxidative Mechanism and Anisotropic Charge Transport Properties of Mangiferin: A Theoretical Study. J. Atom. Mol. Sci. 2015, 6, 34–51. DOI: 10.4208/jams.122214.022515a.
  • Marković, J. M. D.; Pejin, B.; Milenković, D.; Amić, D.; Begović, N.; Mojović, M.; Marković, Z. S. Antiradical Activity of Delphinidin, Pelargonidin and Malvin towards Hydroxyl and Nitric Oxide Radicals: The Energy Requirements Calculations as a Prediction of the Possible Antiradical Mechanisms. Food Chem. 2017, 218, 440–446. DOI: 10.1016/j.foodchem.2016.09.106.
  • Amić, A.; Lučić, B.; Stepanić, V.; Marković, Z.; Marković, S.; Marković, J. M. D.; Amić, D. Free Radical Scavenging Potency of Quercetin Catecholic Colonic Metabolites: Thermodynamics of 2H+/2e− Processes. Food Chem. 2017, 218, 144–151. DOI: 10.1016/j.foodchem.2016.09.018.
  • Ingold, K. U.; Pratt, D. A. Advances in Radical-Trapping Antioxidant Chemistry in the 21st Century: A Kinetics and Mechanisms Perspective. Chem. Rev. 2014, 114, 9022–9046. DOI: 10.1021/cr500226n.
  • Chen, B.; Ma, Y.; Li, H.; Chen, X.; Zhang, C.; Wang, H.; Deng, Z. The Antioxidant Activity and Active Sites of Delphinidin and Petunidin Measured by DFT, In Vitro Chemical-Based and Cell-Based Assays. J. Food Biochem. 2019, 43, e12968. DOI: 10.1111/jfbc.12968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.