206
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

No-stain protein labeling as a potential normalization marker for small extracellular vesicle proteins

, , , &

References

  • Yáñez-Mó, M.; Siljander, P. R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. DOI: 10.3402/jev.v4.27066.
  • Zaborowski, M. P.; Balaj, L.; Breakefield, X. O.; Lai, C. P. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 2015, 65, 783–797. DOI: 10.1093/biosci/biv084.
  • Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. DOI: 10.3390/cells8070727.
  • Karasu, E.; Eisenhardt, S. U.; Harant, J.; Huber-Lang, M. Extracellular Vesicles: Packages Sent with Complement. Front. Immunol. 2018, 9, 721. DOI: 10.3389/fimmu.2018.00721.
  • Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. DOI: 10.1083/jcb.201211138.
  • Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.-J.; Pomeroy, S. L.; Breakefield, X. O.; Skog, J. Tumour Microvesicles Contain Retrotransposon Elements and Amplified Oncogene Sequences. Nat. Commun. 2011, 2, 180. DOI: 10.1038/ncomms1180.
  • Zhou, Y.-G.; Mohamadi, R. M.; Poudineh, M.; Kermanshah, L.; Ahmed, S.; Safaei, T. S.; Stojcic, J.; Nam, R. K.; Sargent, E. H.; Kelley, S. O. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. Small 2016, 12, 727–732. DOI: 10.1002/smll.201502365.
  • Caby, M. P.; Lankar, D.; Vincendeau-Scherrer, C.; Raposo, G.; Bonnerot, C. Exosomal-Like Vesicles Are Present in Human Blood Plasma. Int. Immunol. 2005, 17, 879–887. DOI: 10.1093/intimm/dxh267.
  • Chiabotto  , Gai  , Deregibus  , Camussi  , Salivary Extracellular Vesicle-Associated ExRNA as Cancer Biomarker. Cancers 2019, 11, 891. DOI: 10.3390/cancers11070891.
  • Galley, J. D.; Besner, G. E. The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles. Nutrients 2020, 12, 745. DOI: 10.3390/nu12030745.
  • Karvinen, S.; Sievänen, T.; Karppinen, J. E.; Hautasaari, P.; Bart, G.; Samoylenko, A.; Vainio, S. J.; Ahtiainen, J. P.; Laakkonen, E. K.; Kujala, U. M. MicroRNAs in Extracellular Vesicles in Sweat Change in Response to Endurance Exercise. Front. Physiol. 2020, 11, 676. DOI: 10.3389/fphys.2020.00676.
  • Pastor, L.; Vera, E.; Marin, J. M.; Sanz-Rubio, D. Extracellular Vesicles from Airway Secretions: New Insights in Lung Diseases. Int. J. Mol. Sci. 2021, 22, 583. DOI: 10.3390/ijms22020583.
  • Pisitkun, T.; Shen, R. F.; Knepper, M. A. Identification and Proteomic Profiling of Exosomes in Human Urine. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13368–13373. DOI: 10.1073/pnas.0403453101.
  • Liang, K.; Liu, F.; Fan, J.; Sun, D.; Liu, C.; Lyon, C. J.; Bernard, D. W.; Li, Y.; Yokoi, K.; Katz, M. H.; et al. Nanoplasmonic Quantification of Tumor-Derived Extracellular Vesicles in Plasma Microsamples for Diagnosis and Treatment Monitoring. Nat. Biomed. Eng. 2017, 1, 0021. DOI: 10.1038/s41551-016-0021.
  • Zebrowska, A.; Widlak, P.; Whiteside, T.; Pietrowska, M. Signaling of Tumor-Derived SEV Impacts Melanoma Progression. Int. J. Mol. Sci. 2020, 21, 5066. DOI: 10.3390/ijms21145066.
  • Gouin, K.; Peck, K.; Antes, T.; Johnson, J. L.; Li, C.; Vaturi, S. D.; Middleton, R.; Couto, G.; Walravens, A.; Rodriguez‐Borlado, L.; et al. A Comprehensive Method for Identification of Suitable Reference Genes in Extracellular Vesicles. J. Extracell. Vesicles 2017, 6, 1347019. DOI: 10.1080/20013078.2017.1347019.
  • Singh, A. D.; Koyyada, R.; Samal, R.; Alvi, S. B.; Patnam, S.; Rengan, A. K.; Mudigonda, S. S.; Maitra, S.; Manda, S. V. Establishment of Optimal Housekeeping Genes for Urinary Extracellular Vesicle Biomarker Development: A Step towards Non-invasive Diagnostics. Res. Square 2021. DOI: 10.21203/rs.3.rs-769529/v1.
  • Scavo, M. P., Depalo, N., Rizzi F., Ingrosso, C., Fanizza, E., Chieti, A., Messa C., Denora N., Laquintana, V., Striccoli, M. et al. FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation. Cells 2019, 8, 777. DOI: 10.3390/cells8080777.
  • Takeda, Y. S.; Xu, Q. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLOS One 2015, 10, e0135111. DOI: 10.1371/journal.pone.0135111.
  • Iavello, A.; Frech, V. S. L.; Gai, C.; Deregibus, M. C.; Quesenberry, P. J.; Camussi, G. Role of Alix in MiRNA Packaging during Extracellular Vesicle Biogenesis. Int. J. Mol. Med. 2016, 37, 958–966. DOI: 10.3892/ijmm.2016.2488.
  • Sork, H.; Corso, G.; Krjutskov, K.; Johansson, H. J.; Nordin, J. Z.; Wiklander, O. P. B.; Lee, Y. X. F.; Westholm, J. O.; Lehtiö, J.; Wood, M. J. A.; et al. Heterogeneity and Interplay of the Extracellular Vesicle Small RNA Transcriptome and Proteome. Sci. Rep. 2018, 8, 10813. DOI: 10.1038/s41598-018-28485-9.
  • Karimi, N.; Cvjetkovic, A.; Jang, S. C.; Crescitelli, R.; Hosseinpour Feizi, M. A.; Nieuwland, R.; Lötvall, J.; Lässer, C. Detailed Analysis of the Plasma Extracellular Vesicle Proteome after Separation from Lipoproteins. Cell. Mol. Life Sci. 2018, 75, 2873–2886. DOI: 10.1007/s00018-018-2773-4.
  • Kilinc, S.; Paisner, R.; Camarda, R.; Gupta, S.; Momcilovic, O.; Kohnz, R. A.; Avsaroglu, B.; L'Etoile, N. D.; Perera, R. M.; Nomura, D. K.; et al. Oncogene-Regulated Release of Extracellular Vesicles. Dev. Cell 2021, 56, 1989–2006.e6. DOI: 10.1016/j.devcel.2021.05.014.
  • Hosseini-Beheshti, E.; Pham, S.; Adomat, H.; Li, N.; Tomlinson Guns, E. S. Exosomes as Biomarker Enriched Microvesicles: Characterization of Exosomal Proteins Derived from a Panel of Prostate Cell Lines with Distinct AR Phenotypes. Mol. Cell Proteomics 2012, 11, 863–885. DOI: 10.1074/mcp.M111.014845.
  • Zhang, Y.; Meng, J.; Zhang, L.; Ramkrishnan, S.; Roy, S. Extracellular Vesicles with Exosome-Like Features Transfer TLRs between Dendritic Cells. Immunohorizons 2019, 3, 186–193. DOI: 10.4049/immunohorizons.1900016.
  • la Shu, S.; Yang, Y.; Allen, C. L.; Hurley, E.; Tung, K. H.; Minderman, H.; Wu, Y.; Ernstoff, M. S. Purity and Yield of Melanoma Exosomes Are Dependent on Isolation Method. J. Extracell. Vesicles 2020, 9, 1692401. DOI: 10.1080/20013078.2019.1692401.
  • Revenfeld, A. L. S.; Bæk, R.; Nielsen, M. H.; Stensballe, A.; Varming, K.; Jørgensen, M. Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood. Clin. Ther. 2014, 36, 830–846. DOI: 10.1016/j.clinthera.2014.05.008.
  • Théry, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr. Protoc. Cell Biol. 2006, Chapter 3:Unit 3.22. DOI: 10.1002/0471143030.cb0322s30.
  • Colell, A.; Green, D. R.; Ricci, J.-E. Novel Roles for GAPDH in Cell Death and Carcinogenesis. Cell Death Differ. 2009, 16, 1573–1581. DOI: 10.1038/cdd.2009.137.
  • Joseph, R.; Srivastava, O. P.; Pfister, R. R. Downregulation of β-Actin and Its Regulatory Gene HuR Affect Cell Migration of Human Corneal Fibroblasts. Mol. Vis. 2014, 20, 593–605.
  • Liu, N.-K.; Xu, X.-M. β-Tubulin Is a More Suitable Internal Control than β-Actin in Western Blot Analysis of Spinal Cord Tissues after Traumatic Injury. J. Neurotrauma 2006, 23, 1794–1801. DOI: 10.1089/neu.2006.23.1794.
  • Aldridge, G. M.; Podrebarac, D. M.; Greenough, W. T.; Weiler, I. J. The Use of Total Protein Stains as Loading Controls: An Alternative to High-Abundance Single-Protein Controls in Semi-Quantitative Immunoblotting. J. Neurosci. Methods 2008, 172, 250–254. DOI: 10.1016/j.jneumeth.2008.05.003.
  • Colella, A. D.; Chegenii, N.; Tea, M. N.; Gibbins, I. L.; Williams, K. A.; Chataway, T. K. Comparison of Stain-Free Gels with Traditional Immunoblot Loading Control Methodology. Anal. Biochem. 2012, 430, 108–110. DOI: 10.1016/j.ab.2012.08.015.
  • Gürtler, A.; Kunz, N.; Gomolka, M.; Hornhardt, S.; Friedl, A. A.; McDonald, K.; Kohn, J. E.; Posch, A. Stain-Free Technology as a Normalization Tool in Western Blot Analysis. Anal. Biochem. 2013, 433, 105–111. DOI: 10.1016/j.ab.2012.10.010.
  • Hagiwara, M.; Kobayashi, K.-I.; Tadokoro, T.; Yamamoto, Y. Erratum to “Application of SYPRO Ruby- and Flamingo-Stained Polyacrylamide Gels to Western Blot Analysis. Anal. Biochem. 2010, 397, 262–264. DOI: 10.1016/j.ab.2009.10.032.
  • Kirshner, Z. Z.; Gibbs, R. B. Use of the REVERT® Total Protein Stain as a Loading Control Demonstrates Significant Benefits over the Use of Housekeeping Proteins When Analyzing Brain Homogenates by Western Blot: An Analysis of Samples Representing Different Gonadal Hormone States. Mol. Cell Endocrinol. 2018, 473, 156–165. DOI: 10.1016/j.mce.2018.01.015.
  • Romero-Calvo, I.; Ocón, B.; Martínez-Moya, P.; Suárez, M. D.; Zarzuelo, A.; Martínez-Augustin, O.; de Medina, F. S. Reversible Ponceau Staining as a Loading Control Alternative to Actin in Western Blots. Anal. Biochem. 2010, 401, 318–320. DOI: 10.1016/j.ab.2010.02.036.
  • Tie, L.; Xiao, H.; Wu, D.; Yang, Y.; Wang, P. A Brief Guide to Good Practices in Pharmacological Experiments: Western Blotting. Acta Pharmacol. Sin. 2021, 42, 1015–1017. DOI: 10.1038/s41401-020-00539-7.
  • Diller, T.; Thompson, J.; Steer, B. Biological Validation of a Novel Process and Product for Quantitating Western Blots. J. Biotechnol. 2021, 326, 52–60. DOI: 10.1016/j.jbiotec.2020.12.012.
  • Pinto, D. M.; Arriaga, E. A.; Sia, S.; Li, Z.; Dovichi, N. J. Solid-Phase Fluorescent Labeling Reaction of Picomole Amounts of Insulin in Very Dilute Solutions and Their Analysis by Capillary Electrophoresis. Electrophoresis 1995, 16, 534–540. DOI: 10.1002/elps.1150160188.
  • Beale, S. C.; Hsieh, Y.-Z.; Wiesler, D.; Novotny, M. Application of 3-(2-Furoyl)Quinoline-2-Carbaldehyde as a Fluorogenic Reagent for the Analysis of Primary Amines by Liquid Chromatography with Laser-Induced Fluorescence Detection. J. Chromatogr. 1990, 499, 579–587. DOI: 10.1016/S0021-9673(00)97002-X.
  • Takov, K.; Yellon, D. M.; Davidson, S. M. Comparison of Small Extracellular Vesicles Isolated from Plasma by Ultracentrifugation or Size-Exclusion Chromatography: Yield, Purity and Functional Potential. J. Extracell. Vesicles 2019, 8, 1560809. DOI: 10.1080/20013078.2018.1560809.
  • Krušić Alić, V.; Malenica, M.; Biberić, M.; Zrna, S.; Valenčić, L.; Šuput, A.; Kalagac Fabris, L.; Wechtersbach, K.; Kojc, N.; Kurtjak, M.; et al. Extracellular Vesicles from Human Cerebrospinal Fluid Are Effectively Separated by Sepharose CL-6B—Comparison of Four Gravity-Flow Size Exclusion Chromatography Methods. Biomedicines 2022, 10, 785. DOI: 10.3390/biomedicines10040785.
  • Parsons, M. E. M.; McParland, D.; Szklanna, P. B.; Guang, M. H. Z.; O'Connell, K.; O'Connor, H. D.; McGuigan, C.; Ní Áinle, F.; McCann, A.; Maguire, P. B. A Protocol for Improved Precision and Increased Confidence in Nanoparticle Tracking Analysis Concentration Measurements between 50 and 120 Nm in Biological Fluids. Front. Cardiovasc. Med. 2017, 4, 68. DOI: 10.3389/fcvm.2017.00068.
  • Chuo, S. T.-Y.; Chien, J. C.-Y.; Lai, C. P.-K. Imaging Extracellular Vesicles: Current and Emerging Methods. J. Biomed. Sci. 2018, 25, 91. DOI: 10.1186/s12929-018-0494-5.
  • Chen, L.; Brewer, M. D.; Guo, L.; Wang, R.; Jiang, P.; Yang, X. Enhanced Degradation of Misfolded Proteins Promotes Tumorigenesis. Cell Rep. 2017, 18, 3143–3154. DOI: 10.1016/j.celrep.2017.03.010.
  • Kong, A. T.; Leprevost, F. v.; Avtonomov, D. M.; Mellacheruvu, D.; Nesvizhskii, A. I. MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry-Based Proteomics. Nat. Methods 2017, 14, 513–520. DOI: 10.1038/nmeth.4256.
  • Yu, F.; Haynes, S. E.; Teo, G. C.; Avtonomov, D. M.; Polasky, D. A.; Nesvizhskii, A. I. Fast Quantitative Analysis of TimsTOF PASEF Data with MSFragger and IonQuant. Mol. Cell Proteomics 2020, 19, 1575–1585. DOI: 10.1074/mcp.TIR120.002048.
  • da Veiga Leprevost, F.; Haynes, S. E.; Avtonomov, D. M.; Chang, H.-Y.; Shanmugam, A. K.; Mellacheruvu, D.; Kong, A. T.; Nesvizhskii, A. I. Philosopher: A Versatile Toolkit for Shotgun Proteomics Data Analysis. Nat. Methods 2020, 17, 869–870. DOI: 10.1038/s41592-020-0912-y.
  • Théry, C.; Witwer, K. W.; Aikawa, E.; Alcaraz, M. J.; Anderson, J. D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G. K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. DOI: 10.1080/20013078.2018.1535750.
  • Lötvall, J.; Hill, A. F.; Hochberg, F.; Buzás, E. I.; di Vizio, D.; Gardiner, C.; Gho, Y. S.; Kurochkin, I. V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: A Position Statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. DOI: 10.3402/jev.v3.26913.
  • Busatto, S.; Morad, G.; Guo, P.; Moses, M. A. The Role of Extracellular Vesicles in the Physiological and Pathological Regulation of the Blood–Brain Barrier. FASEB Bioadv. 2021, 3, 665–675. DOI: 10.1096/fba.2021-00045.
  • Koniusz, S.; Andrzejewska, A.; Muraca, M.; Srivastava, A. K.; Janowski, M.; Lukomska, B. Extracellular Vesicles in Physiology, Pathology, and Therapy of the Immune and Central Nervous System, with Focus on Extracellular Vesicles Derived from Mesenchymal Stem Cells as Therapeutic Tools. Front. Cell Neurosci. 2016, 10, 109. DOI: 10.3389/fncel.2016.00109.
  • Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J. Intercellular Transfer of the Oncogenic Receptor EGFRvIII by Microvesicles Derived from Tumour Cells. Nat. Cell Biol. 2008, 10, 619–624. DOI: 10.1038/ncb1725.
  • Fernández, P. L.; Hernández, L.; Farré, X.; Campo, E.; Cardesa, A. Alterations of Cell Cycle-Regulatory Genes in Prostate Cancer. Pathobiology 2002, 70, 1–10. DOI: 10.1159/000065998.
  • Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D. H.; Gainche, L.; Sena-Esteves, M.; Curry, W. T.; Carter, B. S.; Krichevsky, A. M.; Breakefield, X. O. Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nat. Cell Biol. 2008, 10, 1470–1476. DOI: 10.1038/ncb1800.
  • Xu, Y.; Xia, F.; Ma, L.; Shan, J.; Shen, J.; Yang, Z.; Liu, J.; Cui, Y.; Bian, X.; Bie, P.; et al. MicroRNA-122 Sensitizes HCC Cancer Cells to Adriamycin and Vincristine through Modulating Expression of MDR and Inducing Cell Cycle Arrest. Cancer Lett. 2011, 310, 160–169. DOI: 10.1016/j.canlet.2011.06.027.
  • Xu, R.; Rai, A.; Chen, M.; Suwakulsiri, W.; Greening, D. W.; Simpson, R. J. Extracellular Vesicles in Cancer – Implications for Future Improvements in Cancer Care. Nat. Rev. Clin. Oncol. 2018, 15, 617–638. DOI: 10.1038/s41571-018-0036-9.
  • Bobrie, A.; Krumeich, S.; Reyal, F.; Recchi, C.; Moita, L. F.; Seabra, M. C.; Ostrowski, M.; Théry, C. Rab27a Supports Exosome-Dependent and -Independent Mechanisms That Modify the Tumor Microenvironment and Can Promote Tumor Progression. Cancer Res. 2012, 72, 4920–4930. DOI: 10.1158/0008-5472.CAN-12-0925.
  • di Vizio, D.; Morello, M.; Dudley, A. C.; Schow, P. W.; Adam, R. M.; Morley, S.; Mulholland, D.; Rotinen, M.; Hager, M. H.; Insabato, L.; et al. Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic Disease. Am. J. Pathol. 2012, 181, 1573–1584. DOI: 10.1016/j.ajpath.2012.07.030.
  • Hakulinen, J.; Sankkila, L.; Sugiyama, N.; Lehti, K.; Keski-Oja, J. Secretion of Active Membrane Type 1 Matrix Metalloproteinase (MMP-14) into Extracellular Space in Microvesicular Exosomes. J. Cell. Biochem. 2008, 105, 1211–1218. DOI: 10.1002/jcb.21923.
  • Muralidharan-Chari, V.; Clancy, J.; Plou, C.; Romao, M.; Chavrier, P.; Raposo, G.; D'Souza-Schorey, C. ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles. Curr. Biol. 2009, 19, 1875–1885. DOI: 10.1016/j.cub.2009.09.059.
  • Shimoda, M.; Khokha, R. Proteolytic Factors in Exosomes. Proteomics 2013, 13, 1624–1636. DOI: 10.1002/pmic.201200458.
  • Sidhu, S. S.; Mengistab, A. T.; Tauscher, A. N.; LaVail, J.; Basbaum, C. The Microvesicle as a Vehicle for EMMPRIN in Tumor-Stromal Interactions. Oncogene 2004, 23, 956–963. DOI: 10.1038/sj.onc.1207070.
  • Yang, Y.; Li, C.-W.; Chan, L.-C.; Wei, Y.; Hsu, J.-M.; Xia, W.; Cha, J.-H.; Hou, J.; Hsu, J. L.; Sun, L.; Hung, M.-C. Exosomal PD-L1 Harbors Active Defense Function to Suppress T Cell Killing of Breast Cancer Cells and Promote Tumor Growth. Cell Res. 2018, 28, 862–864. DOI: 10.1038/s41422-018-0060-4.
  • Costa-Silva, B.; Aiello, N. M.; Ocean, A. J.; Singh, S.; Zhang, H.; Thakur, B. K.; Becker, A.; Hoshino, A.; Mark, M. T.; Molina, H.; et al. Pancreatic Cancer Exosomes Initiate Pre-Metastatic Niche Formation in the Liver. Nat. Cell Biol. 2015, 17, 816–826. DOI: 10.1038/ncb3169.
  • Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. DOI: 10.1038/nature15756.
  • Lee, S.; Liu, B.; Lee, S.; Huang, S. X.; Shen, B.; Qian, S. B. Global Mapping of Translation Initiation Sites in Mammalian Cells at Single-Nucleotide Resolution. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, E2424-E2432. DOI: 10.1073/pnas.1207846109.
  • Lee, J.-H.; Ostalecki, C.; Oberstein, T.; Schierer, S.; Zinser, E.; Eberhardt, M.; Blume, K.; Plosnita, B.; Stich, L.; Bruns, H.; et al. Alzheimer’s Disease Protease-Containing Plasma Extracellular Vesicles Transfer to the Hippocampus via the Choroid Plexus. EBioMedicine 2022, 77, 103903. DOI: 10.1016/j.ebiom.2022.103903.
  • Fu, S.; Zhang, Y.; Li, Y.; Luo, L.; Zhao, Y.; Yao, Y. Extracellular Vesicles in Cardiovascular Diseases. Cell Death Discov. 2020, 6, 68. DOI: 10.1038/s41420-020-00305-y.
  • Zhang, X.; Wu, Y.; Cheng, Q.; Bai, L.; Huang, S.; Gao, J. Extracellular Vesicles in Cardiovascular Diseases: Diagnosis and Therapy. Front. Cell Dev. Biol. 2022, 10, 875376. DOI: 10.3389/fcell.2022.875376.
  • Liu, J.; Zhang, Y.; Tian, Y.; Huang, W.; Tong, N.; Fu, X. Integrative Biology of Extracellular Vesicles in Diabetes Mellitus and Diabetic Complications. Theranostics 2022, 12, 1342–1372. DOI: 10.7150/thno.65778.
  • Suire, C. N.; Hade, M. D. Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool. Bioengineering 2022, 9, 105. DOI: 10.3390/bioengineering9030105.
  • Wu, S. F.; Noren Hooten, N.; Freeman, D. W.; Mode, N. A.; Zonderman, A. B.; Evans, M. K. Extracellular Vesicles in Diabetes Mellitus Induce Alterations in Endothelial Cell Morphology and Migration. J. Transl. Med. 2020, 18, 230. DOI: 10.1186/s12967-020-02398-6.
  • Jödicke, R. A.; Huo, S.; Kränkel, N.; Piper, S. K.; Ebinger, M.; Landmesser, U.; Flöel, A.; Endres, M.; Nave, A. H. The Dynamic of Extracellular Vesicles in Patients with Subacute Stroke: Results of the “Biomarkers and Perfusion—Training-Induced Changes after Stroke” (BAPTISe) Study. Front. Neurol. 2021, 12. DOI: 10.3389/fneur.2021.731013.
  • Stenz, K. T.; Just, J.; Blauenfeldt, R. A.; Drasbek, K. R. Extracellular Vesicles in Acute Stroke Diagnostics. Biomedicines 2020, 8, 248. DOI: 10.3390/biomedicines8080248.
  • Hirsch, Y.; Geraghty, J. R.; Reiter, C. R.; Katz, E. A.; Little, C. F.; Tobin, M. K.; Testai, F. D. Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Transl. Stroke Res. 2022. DOI: 10.1007/s12975-022-01027-2.
  • Khalyfa, A.; Sanz-Rubio, D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int. J. Mol. Sci. 2019, 20, 5483. DOI: 10.3390/ijms20215483.
  • Wang, C.; Li, L.; Yang, C.; Zhang, Z.; Li, X.; Wang, Y.; Lv, X.; Qi, X.; Song, G. One Night of Sleep Deprivation Induces Release of Small Extracellular Vesicles into Circulation and Promotes Platelet Activation by Small EVs. J. Cell Mol. Med. 2022, 26, 5033–5043. DOI: 10.1111/jcmm.17528.
  • Gottshall, J. L.; Guedes, V. A.; Pucci, J. U.; Brooks, D.; Watson, N.; Sheth, P.; Gabriel, A.; Mithani, S.; Leete, J. J.; Lai, C.; et al. Poor Sleep Quality Is Linked to Elevated Extracellular Vesicle-Associated Inflammatory Cytokines in Warfighters with Chronic Mild Traumatic Brain Injuries. Front. Pharmacol. 2021, 12, 762077. DOI: 10.3389/fphar.2021.762077.
  • Butko, M. T.; Savas, J. N.; Friedman, B.; Delahunty, C.; Ebner, F.; Yates, J. R.; Tsien, R. Y. In Vivo Quantitative Proteomics of Somatosensory Cortical Synapses Shows Which Protein Levels Are Modulated by Sensory Deprivation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E726-E735. DOI: 10.1073/pnas.1300424110.
  • Choi, D.; Khan, N.; Montermini, L.; Tawil, N.; Meehan, B.; Kim, D.; Roth, F. P.; Divangahi, M.; Rak, J. Quantitative Proteomics and Biological Activity of Extracellular Vesicles Engineered to Express SARS‐CoV‐2 Spike Protein. J. Extracell. Biol. 2022, 1. DOI: 10.1002/jex2.58.
  • Jeppesen, D. K.; Nawrocki, A.; Jensen, S. G.; Thorsen, K.; Whitehead, B.; Howard, K. A.; Dyrskjøt, L.; Ørntoft, T. F.; Larsen, M. R.; Ostenfeld, M. S. Quantitative Proteomics of Fractionated Membrane and Lumen Exosome Proteins from Isogenic Metastatic and Nonmetastatic Bladder Cancer Cells Reveal Differential Expression of EMT Factors. Proteomics 2014, 14, 699–712. DOI: 10.1002/pmic.201300452.
  • Wang, Q.; Sun, Y.; Yang, Y.; Li, C.; Zhang, J.; Wang, S. Quantitative Proteomic Analysis of Urinary Exosomes in Kidney Stone Patients. Transl. Androl. Urol. 2020, 9, 1572–1584. DOI: 10.21037/tau-20-41.
  • Ding, X.-Q.; Wang, Z.-Y.; Xia, D.; Wang, R.-X.; Pan, X.-R.; Tong, J.-H. Proteomic Profiling of Serum Exosomes from Patients with Metastatic Gastric Cancer. Front. Oncol. 2020, 10, 1113. DOI: 10.3389/fonc.2020.01113.
  • Zhu, S.; Xing, C.; Li, R.; Cheng, Z.; Deng, M.; Luo, Y.; Li, H.; Zhang, G.; Sheng, Y.; Peng, H.; et al. Proteomic Profiling of Plasma Exosomes from Patients with B-Cell Acute Lymphoblastic Leukemia. Sci. Rep. 2022, 12, 11975. DOI: 10.1038/s41598-022-16282-4.
  • Li, S.; Li, X.; Yang, S.; Pi, H.; Li, Z.; Yao, P.; Zhang, Q.; Wang, Q.; Shen, P.; Li, X.; et al. Proteomic Landscape of Exosomes Reveals the Functional Contributions of CD151 in Triple-Negative Breast Cancer. Mol. Cell Proteomics 2021, 20, 100121. DOI: 10.1016/j.mcpro.2021.100121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.