126
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microbial fermentation technology for degradation of saponins from peony seed meal

, ORCID Icon, , , & ORCID Icon

References

  • Li, S. S.; Yuan, R. Y.; Chen, L. G.; Wang, L. S.; Hao, X. H.; Wang, L. J.; Zheng, X. C.; Du, H. Systematic Qualitative and Quantitative Assessment of Fatty Acids in the Seeds of 60 Tree Peony (Paeonia Section Moutan DC.) Cultivars by GC-MS. Food Chem. 2015, 173, 133–140. DOI: 10.1016/j.foodchem.2014.10.017.
  • Himmelsbach, M.; Weth, A.; Böhme, C.; Schwarz, M.; Bräunig, P.; Baumgartner, W. The Plant Hopper Issus coleoptratus Can Detoxify Phloem Sap Saponins Including the Degradation of the Terpene Core. Biol. Open 2016, 5, 252–255. DOI: 10.1242/bio.016311.
  • Deng, R.; Gao, J.; Yi, J.; Liu, P. Peony Seeds Oil by-Products: Chemistry and Bioactivity. Ind. Crops Prod. 2022, 187A, 115333. DOI: 10.1016/j.indcrop.2022.115333.
  • Kiarie, E.; Romero, L. F.; Nyachoti, C. M. The Role of Added Feed Enzymes in Promoting Gut Health in Swine and Poultry. Nutr. Res. Rev. 2013, 26, 71–88. DOI: 10.1017/S0954422413000048.
  • Sparg, S. G.; Light, M. E.; van Staden, J. Biological Activities and Distribution of Plant Saponins. J. Ethnopharmacol. 2004, 94, 219–243. DOI: 10.1016/j.jep.2004.05.016.
  • Moghimipour, E.; Handali, S. Saponin: Properties, Methods of Evaluation and Applications. ARRB 2015, 5, 207–220. DOI: 10.9734/ARRB/2015/11674.
  • Adiukwu, P. C.; Kayanja, F. I. B.; Nambatya, G. K.; Rugera, S.; Ezeonwumelu, J. O. C.; Tanayen, J. K.; Murokore, B. J.; Twikirize, O.; Twinomujuni, O.; Byamugisha, D.; Imanirampa, L. Antipyretic and Antinociceptive Properties of the Aqueous Extract and Saponin from an Edible Vegetable: Vernonia Amygdalina Leaf. Afr. J. Food. Agric. Nutr. Dev. 2013, 13, 7587–7606. DOI: 10.18697/ajfand.57.11135.
  • Böttcher, S.; Drusch, S. Saponins—Self-Assembly and Behavior at Aqueous Interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. DOI: 10.1016/j.cis.2017.02.008.
  • Güçlü‐Ustündağ, O.; Mazza, G. Saponins: properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. DOI: 10.1080/10408390600698197.
  • Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G. A. Effects of Saponins on Lipid Metabolism: A Review of Potential Health Benefits in the Treatment of Obesity. Molecules 2016, 21, 1404. DOI: 10.3390/molecules21101404.
  • Cheng, G.; Gao, F.; Sun, X.; Bi, H.; Zhu, Y. Paris Saponin VII Suppresses Osteosarcoma Cell Migration and Invasion by Inhibiting MMP-2/9 Production via the p38 MAPK Signaling Pathway. Mol. Med. Rep. 2016, 14, 3199–3205. DOI: 10.3892/mmr.2016.5663.
  • Song, G.; Shen, X.; Li, S.; Li, Y.; Si, H.; Fan, J.; Li, J.; Gao, E.; Liu, S. Structure-Activity Relationships of 3-O-β-Chacotriosyl Oleanane-Type Triterpenoids as Potential H5N1 Entry Inhibitors. Eur. J. Med. Chem. 2016, 119, 109–121. DOI: 10.1016/j.ejmech.2016.04.061.
  • Johnson, I. T.; Gee, J. M.; Price, K.; Curl, C.; Fenwick, G. R. Influence of Saponins on Gut Permeability and Active Nutrient Transport In Vitro. J. Nutr. 1986, 116, 2270–2277. DOI: 10.1093/jn/116.11.2270.
  • Pleger, L.; Weindl, P. N.; Weindl, P. A.; Carrasco, L. S.; Leitao, C.; Zhao, M.; Schade, B.; Aulrich, K.; Bellof, G. Effects of Increasing Alfalfa (Medicago sativa) Leaf Levels on the Fattening and Slaughtering Performance of Organic Broilers. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1317–1332. DOI: 10.1111/jpn.13353.
  • Cheeke, P. R. Nutritional and Physiological Implications of Saponins: A Review. Can. J. Anim. Sci. 1971, 51, 621–632. DOI: 10.4141/cjas71-082.
  • Vo, N.; Fukushima, E. O.; Muranaka, T. Structure and Hemolytic Activity Relationships of Triterpenoid Saponins and Sapogenins. J. Nat. Med. 2017, 71, 50–58. DOI: 10.1007/s11418-016-1026-9.
  • Zhu, J.; Gao, M.; Zhang, R.; Sun, Z.; Wang, C.; Yang, F.; Huang, T.; Qu, S.; Zhao, L.; Li, Y.; Hao, Z. Effects of Soybean Meal Fermented by L. plantarum, B. subtilis and S. cerevisiae on Growth, Immune Function and Intestinal Morphology in Weaned Piglets. Microb. Cell Fact. 2017, 16, 191. DOI: 10.1186/s12934-017-0809-3.
  • Wie, H. J.; Zhao, H. L.; Chang, J. H.; Kim, Y. S.; Hwang, I. K.; Ji, G. E. Enzymatic Modification of Saponins from Platycodon grandiflorum with Aspergillus niger. J. Agric. Food Chem. 2007, 55, 8908–8913. DOI: 10.1021/jf0716937.
  • García-Amado, M. A.; Michelangeli, F.; Gueneau, P.; Perez, M. E.; Domínguez-Bello, M. G. Bacterial Detoxification of Saponins in the Crop of the Avian Foregut Fermenter Opisthocomus hoazin. J. Anim. Feed Sci. 2007, 16, 82–85. DOI: 10.22358/jafs/74460/2007.
  • Ruiz Sella, S.; Bueno, T.; de Oliveira, A.; Karp, S. G.; Soccol, C. R. Bacillus subtilis Natto as a Potential Probiotic in Animal Nutrition. Crit. Rev. Biotechnol. 2021, 41, 355–369. DOI: 10.1080/07388551.2020.1858019.
  • Ogbuewu, I. P.; Mabelebele, M.; Sebola, N. A.; Mbajiorgu, C. Bacillus Probiotics as Alternatives to In-Feed Antibiotics and Its Influence on Growth, Serum Chemistry, Antioxidant Status, Intestinal Histomorphology, and Lesion Scores in Disease-Challenged Broiler Chickens. Front. Vet. Sci. 2022, 9, 876725. DOI: 10.3389/fvets.2022.876725.
  • Chen, J.; Zhu, Y.; Fu, G.; Song, Y.; Jin, Z.; Sun, Y.; Zhang, D. High-Level Intra- and Extra-Cellular Production of D-Psicose 3-Epimerase via a Modified Xylose-Inducible Expression System in Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2016, 43, 1577–1591. DOI: 10.1007/s10295-016-1819-6.
  • Bai, K.; Huang, Q.; Zhang, J.; He, J.; Zhang, L.; Wang, T. Supplemental Effects of Probiotic Bacillus subtilis fmbJ on Growth Performance, Antioxidant Capacity, and Meat Quality of Broiler Chickens. Poultr. Sci. 2017, 96, 74–82. DOI: 10.3382/ps/pew246.
  • Qian, B.; Yin, L.; Yao, X.; Zhong, Y.; Gui, J.; Lu, F.; Zhang, F.; Zhang, J. Effects of Fermentation on the Hemolytic Activity and Degradation of Camellia oleifera Saponins by Lactobacillus crustorum and Bacillus subtilis. FEMS Microbiol. Lett. 2018, 365, fny014. DOI: 10.1093/femsle/fny014.
  • Ahiwe, E. U.; Abdallh, M. E.; Chang’a, E. P.; Omede, A. A.; Al-Qahtani, M.; Gausi, H.; Graham, H.; Iji, P. A. Influence of Dietary Supplementation of Autolyzed Whole Yeast and Yeast Cell Wall Products on Broiler Chickens. Asian Australas. J. Anim. Sci. 2020, 33, 579–587. DOI: 10.5713/ajas.19.0220.
  • Sousa, R. F.; Dourado, L. R. B.; Lopes, J. B.; Fernandes, M. L.; Kato, R. K.; Nascimento, D. C. N.; Sakomura, N. K.; Lima, S. B. P.; Ferreira, G. J. B. C. Effect of an Enzymatic Blend and Yeast on the Performance, Carcass Yield and Histomorphometry of the Small Intestine in Broilers from 21 to 42 Days of Age. Braz. J. Poult. Sci. 2019, 21, 1–6. DOI: 10.1590/1806-9061-2018-0758.
  • Stanley, V. G.; Ojo, R.; Woldesenbet, S.; Hutchinson, D. H.; Kubena, L. F. The Use of Saccharomyces cerevisiae to Suppress the Effects of Aflatoxicosis in Broiler Chicks. Poult. Sci. 1993, 72, 1867–1872. DOI: 10.3382/ps.0721867.
  • Abdel-Latif, M. A.; Abd El-Hack, M. E.; Swelum, A. A.; Saadeldin, I. M.; Elbestawy, A. R.; Shewita, R. S.; Ba-Awadh, H. A.; Alowaimer, A. N.; Abd El-Hamid, H. S. Single and Combined Effects of Clostridium butyricum and Saccharomyces cerevisiae on Growth Indices, Intestinal Health, and Immunity of Broilers. Animals 2018, 8, 184. DOI: 10.3390/ani8100184.
  • Olnood, C. G.; Beski, S.; Choct, M.; Iji, P. A. Novel Probiotics: Their Effects on Growth Performance, Gut Development, Microbial Community and Activity of Broiler Chickens. Anim. Nutr. 2015, 1, 184–191. DOI: 10.1016/j.aninu.2015.07.003.
  • Heng, X.; Chen, H.; Lu, C.; Feng, T.; Li, K.; Gao, E. Study on Synergistic Fermentation of Bean Dregs and Soybean Meal by Multiple Strains and Proteases. LWT 2022, 154, 112626. DOI: 10.1016/j.lwt.2021.112626.
  • Khempaka, S.; Thongkratok, R.; Okrathok, S.; Molee, W. An Evaluation of Cassava Pulp Feedstuff Fermented with A. oryzae, on Growth Performance, Nutrient Digestibility and Carcass Quality of Broilers. J. Poult. Sci. 2014, 51, 71–79. DOI: 10.2141/jpsa.0130022.
  • Elghandour, M.; Tan, Z. L.; Abu Hafsa, S. H.; Adegbeye, M. J.; Greiner, R.; Ugbogu, E. A.; Cedillo Monroy, J.; Salem, A. Saccharomyces cerevisiae as a Probiotic Feed Additive to Non- and Pseudo-Ruminant Feeding: A Review. J. Appl. Microbiol. 2020, 128, 658–674. DOI: 10.1111/jam.14416.
  • Lazic, L. Use of Orthogonal Arrays and Design of Experiments via Taguchi Methods in Software Testing. Recent Advances in Applied and Theoretical Mathematics, Optimal Software Quality Management Tools Design. 2013.
  • Wang, L.; Zhang, B.; Han, J.; Zheng, Y.; Li, J.; Shan, A. Optimization of Hydrolysis Condition of Blood Meal by Bacillus subtilis with Response Surface Methodology. Int. Biodeterior. Biodegrad. 2015, 104, 112–117. DOI: 10.1016/j.ibiod.2015.05.018.
  • Guo, C. Y.; Wang, J.; Hou, Y.; Zhao, Y. M.; Shen, L. X.; Zhang, D. S. Orthogonal Test Design for Optimizing the Extraction of Total Flavonoids from Inula helenium. Pharmacogn. Mag. 2013, 9, 192–195. DOI: 10.4103/0973-1296.113260.
  • Gao, Y.; Wu, J. Study on Optimization of Ethanol Reflux Extraction of Phenolic Acids from Salvia miltiorrhiza. J. Biosci. Med. 2023, 11, 98–105. DOI: 10.4236/jbm.2023.111010.
  • Hu, Y.; Cui, X.; Zhang, Z.; Chen, L.; Zhang, Y.; Wang, C.; Yang, X.; Qu, Y.; Xiong, Y. Optimisation of Ethanol-Reflux Extraction of Saponins from Steamed Panax notoginseng by Response Surface Methodology and Evaluation of Hematopoiesis Effect. Molecules 2018, 23, 1206. DOI: 10.3390/molecules23051206.
  • Chang, M.; Lian, J.; Liu, R.; Jin, Q.; Wang, X. Production of Yellow Wine from Camellia oleifera Meal Pretreated by Mixed Cultured Solid-State Fermentation. Int. J. Food Sci. Technol. 2014, 49, 1715–1721. DOI: 10.1111/ijfs.12480.
  • Qian, C. M.; Zhang, W. T.; Luo, H. X.; Chen, J. Application of Response Surface Methodology to Optimise the Extraction of Tea Saponin from Camellia oleifera, and Their Verification by HPLC. Int. Food Res. J. 2022, 29, 1339–1347. DOI: 10.47836/ifrj.29.6.10.
  • Phengnuam, T.; Suntornsuk, W. Detoxification and anti-Nutrients Reduction of Jatropha curcas Seed Cake by Bacillus Fermentation. J. Biosci. Bioeng. 2013, 115, 168–172. DOI: 10.1016/j.jbiosc.2012.08.017.
  • De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Nutritional and Functional Effects of the Lactic Acid Bacteria Fermentation on Gelatinized Legume Flours. Int. J. Food Microbiol. 2020, 316, 108426. DOI: 10.1016/j.ijfoodmicro.2019.108426.
  • Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Lin Luo, L. Improvement of Nutritional Value and Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus subtilis. LWT 2017, 86, 1–7.
  • Nualkul, M.; Yuangsoi, B.; Hongoh, Y.; Yamada, A.; Deevong, P. Improving the Nutritional Value and Bioactivity of Soybean Meal in Solid-State Fermentation Using Bacillus Strains Newly Isolated from the Gut of the Termite Termes propinquus. FEMS Microbiol. Lett. 2022, 369, fnac044. DOI: 10.1093/femsle/fnac044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.