168
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Isolation and identification of high-yielding alkaline phosphatase strain: a novel mutagenesis technique and optimization of fermentation conditions

ORCID Icon, , , , , & show all

References

  • Coleman, J. E. Structure and Mechanism of Alkaline Phosphatase. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483.
  • Tang, Z.; Chen, H.; He, H.; Ma, C. Assays for Alkaline Phosphatase Activity: Progress and Prospects. TrAC, Trends Anal. Chem. 2019, 113, 32–43. DOI: 10.1016/j.trac.2019.01.019.
  • Qian, Z.; Chai, L.; Zhou, Q.; Huang, Y.; Tang, C.; Chen, J.; Feng, H. Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring. Anal. Chem. 2015, 87, 7332–7339. DOI: 10.1021/acs.analchem.5b01488.
  • Al-Ghurabi, B. H.; Yaseen, A. K.; Hamzah, M. I. Serum Levels of Lactate Dehydrogenase and Alkaline Phosphatase Enzymes in Colorectal Cancer. J. Pure Appl. Microbiol. 2019, 13, 475–479. DOI: 10.22207/JPAM.13.1.53.
  • Okazaki, Y.; Katayama, T. Consumption of Non-Digestible Oligosaccharides Elevates Colonic Alkaline Phosphatase Activity by up-Regulating the Expression of IAP-I, with Increased Mucins and Microbial Fermentation in Rats Fed a High-Fat Diet. Br. J. Nutr. 2019, 121, 146–154. DOI: 10.1017/S0007114518003082.
  • Peters, E.; Geraci, S.; Heemskerk, S.; Wilmer, M. J.; Bilos, A.; Kraenzlin, B.; Gretz, N.; Pickkers, P.; Masereeuw, R. Alkaline Phosphatase Protects against Renal Inflammation through Dephosphorylation of Lipopolysaccharide and Adenosine Triphosphate. Br. J. Pharmacol. 2015, 172, 4932–4945.
  • Peters, E.; Mehta, R. L.; Murray, P. T.; Hummel, J.; Joannidis, M.; Kellum, J. A.; Arend, J.; Pickkers, P. Study Protocol for a Multicentre Randomised Controlled Trial: Safety, Tolerability, Efficacy and Quality of Life of a Human Recombinant Alkaline Phosphatase in Patients with Sepsis-Associated Acute Kidney Injury (STOP-AKI). BMJ Open 2016, 6, e012371. DOI: 10.1136/bmjopen-2016-012371.
  • Lin, J.; Yu, J.; Wang, H.; Xu, Y.; Li, F.; Chen, X.; Liang, Y.; Tang, J.; Wu, L.; Zhou, Z.; et al. Development of a Highly Thermostable Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Carcinoembryonic Antigen Detection. Anal. Bioanal. Chem. 2020, 412, 1723–1728. DOI: 10.1007/s00216-020-02456-4.
  • Banik, R. M.; Pandey, S. K. Selection of Metal Salts for Alkaline Phosphatase Production Using Response Surface Methodology. Food Res. Int. 2009, 42, 470–475. DOI: 10.1016/j.foodres.2009.01.018.
  • Horiuchi, T.; Horiuchi, S.; Mizuno, D. A Possible Negative Feedback Phenomenon Controlling Formation of Alkaline Phosphomonoesterase in Escherichia coli. Nature 1959, 183, 1529–1530.
  • Zappa, S.; Rolland, J. L.; Flament, D.; Gueguen, Y.; Boudrant, J.; Dietrich, J. Characterization of a Highly Thermostable Alkaline Phosphatase from the Euryarchaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 2001, 67, 4504–4511.
  • Xu, W.; Jia, H.; Zhang, L.; Wang, H.; Tang, H.; Zhang, L. Effects of GSH1 and GSH2 Gene Mutation on Glutathione Synthetases Activity of Saccharomyces cerevisiae. Protein J. 2017, 36, 270–277. DOI: 10.1007/s10930-017-9731-0.
  • Zhang, X.; Zhang, X.-F.; Li, H.-P.; Wang, L.-Y.; Zhang, C.; Xing, X.-H.; Bao, C.-Y. Atmospheric and Room Temperature Plasma (ARTP) as a New Powerful Mutagenesis Tool. Appl. Microbiol. Biotechnol. 2014, 98, 5387–5396. DOI: 10.1007/s00253-014-5755-y.
  • Cao, S.; Zhou, X.; Jin, W.; Wang, F.; Tu, R.; Han, S.; Chen, H.; Chen, C.; Xie, G.-J.; Ma, F.; et al. Improving of Lipid Productivity of the Oleaginous Microalgae Chlorella pyrenoidosa via Atmospheric and Room Temperature Plasma (ARTP). Bioresour. Technol. 2017, 244, 1400–1406. DOI: 10.1016/j.biortech.2017.05.039.
  • Li, H. P.; Sun, W. T.; Wang, H. B.; Li, G.; Bao, C. Y. Electrical Features of Radio-Frequency, Atmospheric-Pressure, Bare-Metallic-Electrode Glow Discharges. Plasma Chem. Plasma Process. 2007, 27, 529–545. DOI: 10.1007/s11090-007-9079-x.
  • Yatagai, F. Mutations Induced by Heavy Charged Particles. Biol. Sci. Space 2004, 18, 224–234. DOI: 10.2187/bss.18.224.
  • Wang, L. Y.; Li, G.; Zhao, H. X.; Wang, S.; Li, H. P.; Bao, C. Y.; et al. A New Method for Microbial Breeding by Atmospheric-Pressure, Non-Equilibrium Discharge Plasmas. J. Biotechnol. 2008, 136, S295–S6.
  • Akpa, T. C.; Weber, K. J.; Schneider, E.; Kiefer, J.; Frankenberg-Schwager, M.; Harbich, R.; Frankenberg, D. Heavy Ion-Induced DNA Double-Strand Breaks in Yeast. Int. J. Radiat. Biol. 1992, 62, 279–287.
  • Tari, C.; Gögus, N.; Tokatli, F. Optimization of Biomass, Pellet Size and Polygalacturonase Production by Aspergillus sojae ATCC 20235 Using Response Surface Methodology. Enzyme Microb. Technol. 2007, 40, 1108–1116. DOI: 10.1016/j.enzmictec.2006.08.016.
  • Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; von Woedtke, T.; Brandenburg, R.; et al. Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D Appl. Phys. 2011, 44, 013002.
  • Gu, C.; Wang, G.; Mai, S.; Wu, P.; Wu, J.; Wang, G.; Liu, H.; Zhang, J. ARTP Mutation and Genome Shuffling of ABE Fermentation Symbiotic System for Improvement of Butanol Production. Appl. Microbiol. Biotechnol. 2017, 101, 2189–2199. DOI: 10.1007/s00253-017-8093-z.
  • Xu, J. Z.; Zhang, W. G. Menaquinone-7 Production from Maize Meal Hydrolysate by Bacillus Isolates with Diphenylamine and Analogue Resistance. J. Zhejiang Univ. Sci. B 2017, 18, 462–473. DOI: 10.1631/jzus.B1600127.
  • Ma, Y.; Shen, W.; Chen, X.; Liu, L.; Zhou, Z.; Xu, F.; Yang, H. Significantly Enhancing Recombinant Alkaline Amylase Production in Bacillus subtilis by Integration of a Novel Mutagenesis-Screening Strategy with Systems-Level Fermentation Optimization. J. Biol. Eng. 2016, 10, 13. DOI: 10.1186/s13036-016-0035-2.
  • Fan, X.; Wu, H.; Li, G.; Yuan, H.; Zhang, H.; Li, Y.; Xie, X.; Chen, N. Improvement of Uridine Production of Bacillus subtilis by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening. PLoS ONE 2017, 12, e0176545. DOI: 10.1371/journal.pone.0176545.
  • Elibol, M. Optimization of Medium Composition for Actinorhodin Production by Streptomyces coelicolor A3(2) with Response Surface Methodology. Process Biochem. 2004, 39, 1057–1062. DOI: 10.1016/S0032-9592(03)00232-2.
  • Hall, B. G. Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. DOI: 10.1093/molbev/mst012.
  • Lu, F.; Wu, M.-J.; Yu, C.-J.; Gao, X.; Zhou, H.; Yuan, Z. Colorimetric Alkaline Phosphatase Activity Detection by Integrating Phosphorylation-Mediated Sulfydryl Protection/Deprotection and Fluorosurfactant Stabilized Gold Nanoparticles. Sens. Actuators, B 2020, 325, 128959. DOI: 10.1016/j.snb.2020.128959.
  • Nath, A.; Chattopadhyay, P. K. Optimization of Oven Toasting for Improving Crispness and Other Quality Attributes of Ready to Eat Potato-Soy Snack Using Response Surface Methodology. J. Food Eng. 2007, 80, 1282–1292. DOI: 10.1016/j.jfoodeng.2006.09.023.
  • Zhang, C.; Qin, J.; Dai, Y.; Mu, W.; Zhang, T. Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis Enables Xylitol Over-Production with Yeast Candida tropicalis. J. Biotechnol. 2019, 296, 7–13. DOI: 10.1016/j.jbiotec.2019.01.026.
  • Xu, F.; Jin, H.; Li, H.; Tao, L.; Wang, J.; Lv, J.; Chen, S. Genome Shuffling of Trichoderma viride for Enhanced Cellulase Production. Ann. Microbiol. 2012, 62, 509–515. DOI: 10.1007/s13213-011-0284-8.
  • Cheng, G.; Xu, J.; Xia, X.; Guo, Y.; Xu, K.; Su, C.; Zhang, W. Breeding L-Arginine-Producing Strains by a Novel Mutagenesis Method: Atmospheric and Room Temperature Plasma (ARTP). Prep. Biochem. Biotechnol. 2016, 46, 509–516.
  • Lu, Y.; Wang, L.; Ma, K.; Li, G.; Zhang, C.; Zhao, H.; Lai, Q.; Li, H.-P.; Xing, X.-H. Characteristics of Hydrogen Production of an Enterobacter aerogenes Mutant Generated by a New Atmospheric and Room Temperature Plasma (ARTP). Biochem. Eng. J. 2011, 55, 17–22. DOI: 10.1016/j.bej.2011.02.020.
  • Liu, R.; Liang, L.; Ma, J.; Ren, X.; Jiang, M.; Chen, K.; Wei, P.; Ouyang, P. An Engineering Escherichia coli Mutant with High Succinic Acid Production in the Defined Medium Obtained by the Atmospheric and Room Temperature Plasma. Process Biochem. 2013, 48, 1603–1609. DOI: 10.1016/j.procbio.2013.07.020.
  • Wang, X.; Lu, M.; Wang, S.; Fang, Y.; Wang, D.; Ren, W.; Zhao, G. The Atmospheric and Room-Temperature Plasma (ARTP) Method on the Dextranase Activity and Structure. Int. J. Biol. Macromol. 2014, 70, 284–291. DOI: 10.1016/j.ijbiomac.2014.07.006.
  • Nan, J.; Zhang, S. R.; Jiang, L. Antibacterial Potential of Bacillus amyloliquefaciens GJ1 against Citrus Huanglongbing. Plants-Basel 2021, 10, 261.
  • Vinodkumar, S.; Nakkeeran, S. Bacillus amyloliquefaciens (VB7) with Diverse Antimicrobial Peptide Genes: A Potential Antagonist for the Management of Fairy Ring Spot in Carnations. Curr. Sci. India 2018, 115, 1519–1524. DOI: 10.18520/cs/v115/i8/1519-1524.
  • Pramanik, K.; Ghosh, P. K.; Ray, S.; Sarkar, A.; Mitra, S.; Maiti, T. K. An In Silico Structural, Functional and Phylogenetic Analysis with Three Dimensional Protein Modeling of Alkaline Phosphatase Enzyme of Pseudomonas aeruginosa. J. Genet. Eng. Biotechnol. 2017, 15, 527–537. DOI: 10.1016/j.jgeb.2017.05.003.
  • Liang, M. H.; Liang, Y. J.; Chai, J. Y.; Zhou, S. S.; Jiang, J. G. Reduction of Methanol in Brewed Wine by the Use of Atmospheric and Room-Temperature Plasma Method and the Combination Optimization of Malt with Different Adjuncts. J. Food Sci. 2014, 79, M2308–14.
  • Sun, J.; Wang, Y.; Wu, B.; Bai, Z.; He, B. Enhanced Production of d-Lactic Acid by Sporolactobacillus sp.Y2-8 Mutant Generated by Atmospheric and Room Temperature Plasma. Biotechnol. Appl. Biochem. 2015, 62, 287–292. DOI: 10.1002/bab.1267.
  • Jiang, M.; Wan, Q.; Liu, R.; Liang, L.; Chen, X.; Wu, M.; Zhang, H.; Chen, K.; Ma, J.; Wei, P.; et al. Succinic Acid Production from Corn Stalk Hydrolysate in an E. coli Mutant Generated by Atmospheric and Room-Temperature Plasmas and Metabolic Evolution Strategies. J. Ind. Microbiol. Biotechnol. 2014, 41, 115–123. DOI: 10.1007/s10295-013-1346-7.
  • Wang, L. ‐Y.; Huang, Z. ‐L.; Li, G.; Zhao, H. ‐X.; Xing, X. ‐H.; Sun, W. ‐T.; Li, H. ‐P.; Gou, Z. ‐X.; Bao, C. ‐Y. Novel Mutation Breeding Method for Streptomyces avermitilis Using an Atmospheric Pressure Glow Discharge Plasma. J. Appl. Microbiol. 2010, 108, 851–858. DOI: 10.1111/j.1365-2672.2009.04483.x.
  • Laksmi, F. A.; Imamura, H.; Tsurumaru, H.; Nakamura, Y.; Hanagata, H.; Arai, S.; Tokunaga, M.; Ishibashi, M. Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis. Protein J. 2020, 39, 46–53. DOI: 10.1007/s10930-019-09874-z.
  • Aiba, H.; Nishiya, Y.; Ojima, Y.; Azuma, M. Over-Expression, Characterization, and Modification of Highly Active Alkaline Phosphatase from a Shewanella Genus Bacterium. Biosci. Biotechnol. Biochem. 2017, 81, 1994–2001. DOI: 10.1080/09168451.2017.1356217.
  • Hu, Z. C.; Li, W. J.; Zou, S. P.; Niu, K.; Zheng, Y. G. Mutagenesis of Echinocandin B Overproducing Aspergillus nidulans Capable of Using Starch as Main Carbon Source. Prep. Biochem. Biotechnol. 2020, 50, 745–752. DOI: 10.1080/10826068.2020.1734940.
  • Sharma, U.; Pal, D.; Prasad, R. Alkaline Phosphatase: An Overview. Ind. J. Clin. Biochem. 2014, 29, 269–278. DOI: 10.1007/s12291-013-0408-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.